Name: \qquad

CSE 505, Fall 2009, Final Examination 14 December 2009

Please do not turn the page until everyone is ready.

Rules:

- The exam is closed-book, closed-note, except for one side of one 8.5 x11in piece of paper.
- Please stop promptly at 12:20.
- You can rip apart the pages.
- There are $\mathbf{1 0 0}$ points total, distributed unevenly among $\mathbf{7}$ questions.
- The questions have multiple parts.

Advice:

- Read questions carefully. Understand a question before you start writing.
- Write down thoughts and intermediate steps so you can get partial credit.
- The questions are not necessarily in order of difficulty. Skip around. In particular, make sure you get to all the problems.
- If you have questions, ask.
- Relax. You are here to learn.

Name: \qquad
For your reference (page 1 of 2):

$$
\begin{aligned}
& e \quad::=\lambda x . e|x| e e|c|\left\{l_{1}=e_{1}, \ldots, l_{n}=e_{n}\right\}\left|e . l_{i}\right| \text { fix } e \\
& v::=\lambda x . e|c|\left\{l_{1}=v_{1}, \ldots, l_{n}=v_{n}\right\} \\
& \tau::=\text { int }|\tau \rightarrow \tau|\left\{l_{1}: \tau_{1}, \ldots, l_{n}: \tau_{n}\right\} \\
& e \rightarrow e^{\prime} \text { and } \Gamma \vdash e: \tau \text { and } \tau_{1} \leq \tau_{2} \\
& \overline{(\lambda x . e) v \rightarrow e[v / x]} \quad \frac{e_{1} \rightarrow e_{1}^{\prime}}{e_{1} e_{2} \rightarrow e_{1}^{\prime} e_{2}} \quad \frac{e_{2} \rightarrow e_{2}^{\prime}}{v e_{2} \rightarrow v e_{2}^{\prime}} \quad \frac{e \rightarrow e^{\prime}}{\text { fix } e \rightarrow \mathrm{fix} e^{\prime}} \quad \overline{\text { fix } \lambda x . e \rightarrow e[\mathrm{fix} \lambda x . e / x]} \\
& \overline{\left\{l_{1}=v_{1}, \ldots, l_{n}=v_{n}\right\} . l_{i} \rightarrow v_{i}} \\
& \begin{array}{c}
e_{i} \rightarrow e_{i}^{\prime} \\
\left\{l_{1}=v_{1}, \ldots, l_{i-1}=v_{i-1}, l_{i}=e_{i}, \ldots, l_{n}=e_{n}\right\} \rightarrow\left\{l_{1}=v_{1}, \ldots, l_{i-1}=v_{i-1}, l_{i}=e_{i}^{\prime}, \ldots, l_{n}=e_{n}\right\}
\end{array} \\
& \overline{\Gamma \vdash c: \operatorname{int}} \quad \overline{\Gamma \vdash x: \Gamma(x)} \quad \frac{\Gamma, x: \tau_{1} \vdash e: \tau_{2}}{\Gamma \vdash \lambda x . e: \tau_{1} \rightarrow \tau_{2}} \quad \frac{\Gamma \vdash e_{1}: \tau_{2} \rightarrow \tau_{1} \quad \Gamma \vdash e_{2}: \tau_{2}}{\Gamma \vdash e_{1} e_{2}: \tau_{1}} \quad \frac{\Gamma \vdash e: \tau \rightarrow \tau}{\Gamma \vdash \mathrm{fix} e: \tau} \\
& \frac{\Gamma \vdash e_{1}: \tau_{1} \quad \ldots \quad \Gamma \vdash e_{n}: \tau_{n} \quad \text { labels distinct }}{\Gamma \vdash\left\{l_{1}=e_{1}, \ldots, l_{n}=e_{n}\right\}:\left\{l_{1}: \tau_{1}, \ldots, l_{n}: \tau_{n}\right\}} \quad \frac{\Gamma \vdash e:\left\{l_{1}: \tau_{1}, \ldots, l_{n}: \tau_{n}\right\}}{\Gamma \vdash e . l_{i}: \tau_{i}} \quad 1 \leq i \leq n \\
& \frac{\Gamma \vdash e: \tau \quad \tau \leq \tau^{\prime}}{\Gamma \vdash e: \tau^{\prime}} \\
& \overline{\left\{l_{1}: \tau_{1}, \ldots, l_{n}: \tau_{n}, l: \tau\right\} \leq\left\{l_{1}: \tau_{1}, \ldots, l_{n}: \tau_{n}\right\}} \\
& \overline{\left\{l_{1}: \tau_{1}, \ldots, l_{i-1}: \tau_{i-1}, l_{i}: \tau_{i}, \ldots, l_{n}: \tau_{n}\right\} \leq\left\{l_{1}: \tau_{1}, \ldots, l_{i}: \tau_{i}, l_{i-1}: \tau_{i-1}, \ldots, l_{n}: \tau_{n}\right\}} \\
& \begin{aligned}
\tau_{i} & \leq \tau_{i}^{\prime} \\
\left\{l_{1}: \tau_{1}, \ldots, l_{i}: \tau_{i}, \ldots, l_{n}: \tau_{n}\right\} & \leq\left\{l_{1}: \tau_{1}, \ldots, l_{i}: \tau_{i}^{\prime}, \ldots, l_{n}: \tau_{n}\right\}
\end{aligned} \\
& \begin{array}{ll}
\frac{\tau_{3} \leq \tau_{1} \quad \tau_{2} \leq \tau_{4}}{\tau_{1} \rightarrow \tau_{2} \leq \tau_{3} \rightarrow \tau_{4}} & \overline{\tau \leq \tau}
\end{array} \quad \frac{\tau_{1} \leq \tau_{2} \quad \tau_{2} \leq \tau_{3}}{\tau_{1} \leq \tau_{3}} \\
& e::=c|x| \lambda x: \tau . \text { e } \mid \text { e e } \mid \Lambda \alpha \text {. } e \mid e[\tau] \\
& \Gamma::=\quad \mid \Gamma, x: \tau \\
& \tau::=\operatorname{int}|\tau \rightarrow \tau| \alpha \mid \forall \alpha . \tau \\
& v::=c|\lambda x: \tau . e| \Lambda \alpha . e \\
& \Delta::=\cdot \mid \Delta, \alpha \\
& e \rightarrow e^{\prime} \text { and } \Delta ; \Gamma \vdash e: \tau \\
& \frac{e \rightarrow e^{\prime}}{e e_{2} \rightarrow e^{\prime} e_{2}} \quad \frac{e \rightarrow e^{\prime}}{v e \rightarrow v e^{\prime}} \quad \frac{e \rightarrow e^{\prime}}{e[\tau] \rightarrow e^{\prime}[\tau]} \quad \overline{(\lambda x: \tau . e) v \rightarrow e[v / x]} \quad \overline{(\Lambda \alpha . e)[\tau] \rightarrow e[\tau / \alpha]} \\
& \overline{\Delta ; \Gamma \vdash x: \Gamma(x)} \quad \overline{\Delta ; \Gamma \vdash c: \mathrm{int}} \quad \frac{\Delta ; \Gamma, x: \tau_{1} \vdash e: \tau_{2} \quad \Delta \vdash \tau_{1}}{\Delta ; \Gamma \vdash \lambda x: \tau_{1} \cdot e: \tau_{1} \rightarrow \tau_{2}} \quad \frac{\Delta, \alpha ; \Gamma \vdash e: \tau_{1}}{\Delta ; \Gamma \vdash \Lambda \alpha \cdot e: \forall \alpha \cdot \tau_{1}} \\
& \frac{\Delta ; \Gamma \vdash e_{1}: \tau_{2} \rightarrow \tau_{1} \quad \Delta ; \Gamma \vdash e_{2}: \tau_{2}}{\Delta ; \Gamma \vdash e_{1} e_{2}: \tau_{1}} \quad \frac{\Delta ; \Gamma \vdash e: \forall \alpha \cdot \tau_{1} \quad \Delta \vdash \tau_{2}}{\Delta ; \Gamma \vdash e\left[\tau_{2}\right]: \tau_{1}\left[\tau_{2} / \alpha\right]}
\end{aligned}
$$

Name: \qquad

$$
\begin{aligned}
e & ::=\ldots|\mathrm{A}(e)| \mathrm{B}(e) \mid(\text { match } e \text { with } \mathrm{A} x . e \mid \mathrm{B} x . e)\left|\operatorname{roll}_{\tau} e\right| \text { unroll } e|(e, e)| e .1 \mid e .2 \\
\tau & ::=\ldots\left|\tau_{1}+\tau_{2}\right| \mu \alpha . \tau \mid \tau_{1} * \tau_{2} \\
v & ::=\ldots|\mathrm{A}(v)| \mathrm{B}(v) \mid \operatorname{roll} \\
\tau & v \mid(v, v)
\end{aligned}
$$

$e \rightarrow e^{\prime}$ and $\Delta ; \Gamma \vdash e: \tau$

$$
\begin{gathered}
e \rightarrow e^{\prime} \\
\mathrm{A}(e) \rightarrow \mathrm{A}\left(e^{\prime}\right)
\end{gathered} \frac{e \rightarrow e^{\prime}}{\mathrm{B}(e) \rightarrow \mathrm{B}\left(e^{\prime}\right)} \quad \frac{e \rightarrow e^{\prime}}{\text { match } e \text { with } \mathrm{A} x . e_{1} \mid \mathrm{B} y . e_{2} \rightarrow \text { match } e^{\prime} \text { with } \mathrm{A} x . e_{1} \mid \mathrm{B} y \cdot e_{2}}
$$

$$
\overline{\text { match } \mathrm{A}(v) \text { with } \mathrm{A} x . e_{1} \mid \mathrm{B} y . e_{2} \rightarrow e_{1}[v / x]} \quad \overline{\text { match } \mathrm{B}(v) \text { with } \mathrm{A} x . e_{1} \mid \mathrm{B} y . e_{2} \rightarrow e_{2}[v / y]}
$$

$$
\frac{\Delta ; \Gamma \vdash e: \tau_{1}}{\Delta ; \Gamma \vdash \mathrm{A}(e): \tau_{1}+\tau_{2}} \quad \frac{\Delta ; \Gamma \vdash e: \tau_{2}}{\Delta ; \Gamma \vdash \mathrm{B}(e): \tau_{1}+\tau_{2}} \quad \frac{\Delta ; \Gamma \vdash e: \tau[(\mu \alpha . \tau) / \alpha]}{\Delta ; \Gamma \vdash \operatorname{roll}_{\mu \alpha . \tau} e: \mu \alpha . \tau} \quad \frac{\Delta ; \Gamma \vdash e: \mu \alpha . \tau}{\Delta ; \Gamma \vdash \text { unroll } e: \tau[(\mu \alpha . \tau) / \alpha]}
$$

$$
\frac{\Delta ; \Gamma \vdash e_{1}: \tau_{1} \quad \Delta ; \Gamma \vdash e_{2}: \tau_{2}}{\Delta ; \Gamma \vdash\left(e_{1}, e_{2}\right): \tau_{1} * \tau_{2}} \quad \frac{\Delta ; \Gamma \vdash e: \tau_{1} * \tau_{2}}{\Delta ; \Gamma \vdash e .1: \tau_{1}} \quad \frac{\Delta ; \Gamma \vdash e: \tau_{1} * \tau_{2}}{\Delta ; \Gamma \vdash e .2: \tau_{2}}
$$

Module Thread:

```
type t
val create : ('a -> 'b) -> 'a -> t
val join : t -> unit
```

Module Mutex:

```
type t
val create : unit -> t
val lock : t -> unit
val unlock : t -> unit
```

Module Event:

```
type 'a channel
type 'a event
val new_channel : unit -> 'a channel
val send : 'a channel -> 'a -> unit event
val receive : 'a channel -> 'a event
val choose : 'a event list -> 'a event
val wrap : 'a event -> ('a -> 'b) -> 'b event
val sync : 'a event -> 'a
```

$$
\begin{aligned}
& \frac{e_{1} \rightarrow e_{1}^{\prime}}{\left(e_{1}, e_{2}\right) \rightarrow\left(e_{1}^{\prime}, e_{2}\right)} \quad \frac{e_{2} \rightarrow e_{2}^{\prime}}{\left(v, e_{2}\right) \rightarrow\left(v, e_{2}^{\prime}\right)} \quad \frac{e \rightarrow e^{\prime}}{e .1 \rightarrow e^{\prime} .1} \quad \frac{e \rightarrow e^{\prime}}{e .2 \rightarrow e^{\prime} .2} \quad \overline{\left(v_{1}, v_{2}\right) .1 \rightarrow v_{1}} \quad \overline{\left(v_{1}, v_{2}\right) \cdot 2 \rightarrow v_{2}} \\
& \frac{\Delta ; \Gamma \vdash e: \tau_{1}+\tau_{2} \quad \Delta ; \Gamma, x: \tau_{1} \vdash e_{1}: \tau \quad \Delta ; \Gamma, y: \tau_{2} \vdash e_{2}: \tau}{\Delta ; \Gamma \vdash \text { match } e \text { with } \mathrm{A} x . e_{1} \mid \mathrm{B} y . e_{2}: \tau}
\end{aligned}
$$

Name: \qquad

1. ($\mathbf{1 5}$ points) Consider a typed-lambda calculus with functions, integers, records, and subtyping as considered in class. Note this problem considers only the subtyping judgment with the six inference rules on page 2 of this exam, not the typing judgment. For each of the following claims, if it is true, prove it. If it is false, provide a counterexample.
(a) If $\tau_{1} \leq \tau_{2}$ and τ_{1} is a record type, then τ_{2} is a record type.
(b) If $\tau_{1} \leq \tau_{2}$ and τ_{1} contains a function type somewhere in it, then τ_{2} contains a function type somewhere in it.

Solution:

(a) True. Proof by induction on the derivation of $\tau_{1} \leq \tau_{2}$ proceeding by cases on the bottom-most rule instantiated in the derivation:

- If width subtyping, then τ_{2} is a record type.
- If permutation subtyping, then τ_{2} is a record type.
- If depth subtyping on records, then τ_{2} is a record type.
- If function subtyping, then τ_{1} is not a record type so the claim holds vacuously.
- If reflexivity, then $\tau_{1}=\tau_{2}$, so τ_{1} being a record type implies τ_{2} is a record type.
- If transitivity, then by inversion there is some τ such that $\tau_{1} \leq \tau$ and $\tau \leq \tau_{2}$. Assume τ_{1} is a record type. Then by induction and $\tau_{1} \leq \tau, \tau$ is a record type. Then by induction and $\tau \leq \tau_{2}, \tau_{2}$ is a record type.
(b) False. One example: Let $\tau_{1}=\left\{l_{1}: \tau_{2} \rightarrow \tau_{3}\right\}$ and $\tau_{2}=\{ \}$. Width subtyping suffices.

Name: \qquad
2. ($\mathbf{1 0}$ points) Consider System F.
(a) Write a well-typed term that implements function composition and is as polymorphic as possible. Function composition takes two (curried) arguments (say f and g) and returns a function that given x returns $f(g(x))$.
(b) Give the type for the term you wrote in part (a).

Be sure to use parentheses appropriately.

Solution:

(a) $\Lambda \alpha_{1} \cdot \Lambda \alpha_{2} . \Lambda \alpha_{3} . \lambda f: \alpha_{2} \rightarrow \alpha_{3} . \lambda g: \alpha_{1} \rightarrow \alpha_{2} . \lambda x: \alpha_{1} . f(g x)$
(b) $\forall \alpha_{1} . \forall \alpha_{2} . \forall \alpha_{3} .\left(\alpha_{2} \rightarrow \alpha_{3}\right) \rightarrow\left(\alpha_{1} \rightarrow \alpha_{2}\right) \rightarrow \alpha_{1} \rightarrow \alpha_{3}$

Name: \qquad
3. ($\mathbf{1 0}$ points) For each of the following Caml definitions, does it type-check in Caml? If so, what type does it have? If not, why not?
(a) let part_a $=(f u n g$ (fun x y $->$ x) (g 0) (g 17))
(b) let part_b $=(f u n g->(f u n x y->x)(g 0)(g$ true))
(c) let part_c = (fun g -> (fun x y -> x) (g 0) (g (g 17)))

Solution:

(a) Type-checks: (int -> 'a) -> 'a
(b) Does not type-check: The type-inferencer will conclude that g must be a function takes an int and a function that takes a bool, and these cannot both hold.
(c) Type-checks: (int -> int) -> int

Name: \qquad
4. ($\mathbf{1 5}$ points) Consider a typed λ-calculus with recursive types, sums, pairs, int, string, and unit. Assume the language uses explicit roll and unroll coercions (not subtyping) for recursive types.
(a) Give a recursive type for binary trees where interior nodes have no data and each leaf has either a string or an int.
(b) In this part, you can use tr as an abbreviation for the type you gave in part (a). Using fix for recursion, write a program of type $\operatorname{tr} \rightarrow$ (int + unit). When called with a tree, the program should return $\mathrm{A}(i)$ if i is the left-most integer in the tree and $\mathrm{B}(())$ if the tree has no integers. Give explicit types to all function arguments. If you get confused by fix, use let rec instead for significant partial credit.

Solution:

Answer to (b) depends on answer to (a).
(a) One possible answer: $\mu \alpha$.((string +int$)+(\alpha * \alpha))$.
(b) fix $\backslash f$: tr $\rightarrow($ int + unit)).
\x : tr .
match unroll x with
A y. -> (match y with
A z. -> B (())
| B z. -> A (z))
| B y. -> (match f y. 1 with
A z. -> A (z)
| B z. -> f y.2)

Name: \qquad
5. (20 points) In this problem you will use CML to implement a server for "rock-paper-scissors". Rock-paper-scissors is a game where normally there are two players who each pick "rock", "paper", or "scissors" and either one player wins or there is a tie. This Caml code defines the rules for this two-player game:

```
type play = Rock | Scissors | Paper
type winner = Left | Right | Tie
let pick_winner p1 p2 = (* useful helper function *)
    match (p1,p2) with
        (Rock,Rock) -> Tie
    | (Scissors,Scissors) -> Tie
    | (Paper,Paper) -> Tie
    | (Rock,Scissors) -> Left
    | (Rock,Paper) -> Right
    | (Scissors,Paper) -> Left
    | (Scissors,Rock) -> Right
    | (Paper,Rock) -> Left
    | (Paper,Scissors) -> Right
```

You will implement the new_game function in this interface:

```
type game
type play = Rock | Scissors | Paper
type result = Win | Lose
val new_game : unit -> game
val play_game : game -> play -> result
```

new_game creates a new server. Players can play by calling play_game. There are two differences from the two-player version:

- Players do not know their opponent. The server can choose any opponent. A player simply learns whether he/she won or lost.
- There are no ties. The server must match up players so that each player wins or loses. For example, the server can pair a "rock" with a "scissors" or a "paper" but not with another "rock."

To avoid ties, the server may need to make players wait for other players to arrive. However, to avoid any unnecessary waiting, all the zero-or-more waiting players at any one time will have picked the same play - otherwise the server should have paired up two players that picked differently. So, when a new player arrives, if there are no waiters or the waiters "tie" with the new player, then the new player waits. Otherwise, the new player and one waiter complete.
Do not change the partial implementation below; just complete new_game. You do not need choose and wrap. The sample solution is $15-20$ lines. Use pick_winner, defined above. Remember that when players are paired up the winner and the loser need to be informed.

```
type result = Win | Lose
type game = (play * result channel) channel
let new_game () = (* for you *)
let play_game g p =
    let c = new_channel () in
    sync (send g (p,c));
    sync (receive c)
```

Name: \qquad

This page intentionally blank.

Solution:

```
let new_game () =
    let c = new_channel() in
    let send_results winner loser =
        sync(send winner Win);
        sync(send loser Lose) in
    let rec loop wait_kind lst =
        let play, response_ch = sync (receive c) in
        match lst with
            [] -> loop play [response_ch]
        | hd::tl ->
            match pick_winner play wait_kind with
                    Tie -> loop wait_kind (response_ch::lst)
                            | Left -> send_results response_ch hd; loop wait_kind tl
                            | Right -> send_results hd response_ch; loop wait_kind tl in
    ignore(Thread.create (loop Rock) []);
    c
```

Name: \qquad
6. ($\mathbf{1 5}$ points) Consider a class-based OOP language like we did in class where method-name reuse means overriding. Consider this code skeleton:

```
class A { A m() { return self; } ... }
class B extends A { B m() { return super(); } ... }
class C extends B { A m() { return new A(); } ... }
class Main { void main() { ... } }
```

(a) Assuming all code not shown (i.e., the code in the ...) type-checks, there are two reasons the code above does not type-check. What are they?
(b) One of your two answsers to part (a) cannot actually lead to a program getting stuck. Explain why not.
(c) The other of your two answers to part (a) can lead to a program getting stuck. Fill in the ... as necessary (you may not need to use all of them) such that all the code you add type-checks but running the main method would produce a "method not found" error.

Solution:

(a) First, the return type of B's m method is B, but the type of the super call is A, which is not a subtype of B. Second, C's m method has return type A, but it is overriding a method with return type B, and again A is not a subtype of B.
(b) The first one (B's m method) cannot cause a problem. Although the static type of super() is A, in fact this method returns self, which will be a B for any instance of B.
(c) Add to class B a method void n()$\}$. Then make the body of main be something like

```
B c = new C();
C.m().n();
```

The first line type-checks using subsumption. The second line type-checks because B's m returns a B and instance of B have an method. But at run-time, c.m() returns an A, which does not have an n method.

Name: \qquad
7. ($\mathbf{1 5}$ points) Consider a single-inheritance class-based OOP language. Assume booleans are provided as primitives.
Assume method-name reuse means either static overloading or multimethods. For each part give a single answer that is correct under either assumption. This is not intended to make the problem harder.
(a) Write a program (class definitions and client code) such that:

- The program type-checks.
- The program evaluates to true.
- There is one method definition you can remove from the program (comment-out) such that the program still type-checks but the program now evaluates to false.
Clearly indicate which method should be commented out.
(b) Write a program (class definitions and client code) such that:
- The program type-checks.
- The program evaluates to true.
- There is one method definition you can remove from the program (comment-out) such that the program would now have a "no best match" error.
Clearly indicate which method should be commented out.

Solution:

```
(a) class A {}
    class B extends A {}
    class Main{
        bool m(A a) { return false; }
        bool m(B b) { return true; } // This one!
        bool main() {
            return self.m(new B());
        }
    }
(b) class A {}
    class B extends A{}
    class Main{
        bool m(A a, B b) { return true; }
        bool m(B b, A a) { return true; }
        bool m(B b, B B) { return true; } // This one!
        bool main() {
            return self.m(new B(), new B());
        }
    }
```

