
Name:

CSE 505, Fall 2007, Final Examination
10 December 2007

Please do not turn the page until everyone is ready.

Rules:

• The exam is closed-book, closed-note, except for one side of one 8.5x11in piece of paper.

• Please stop promptly at 12:20.

• You can rip apart the pages, but please write your name on each page.

• There are 96 points total, distributed unevenly among 5 questions.

• Most questions have multiple parts and the last question is much shorter and worth fewer points.

Advice:

• Read questions carefully. Understand a question before you start writing.

• Write down thoughts and intermediate steps so you can get partial credit.

• The questions are not necessarily in order of difficulty. Skip around. In particular, make sure you
get to all the problems.

• If you have questions, ask.

• Relax. You are here to learn.

1

Name:

For your reference (page 1 of 2):

e ::= λx. e | x | e e | c | {l1 = e1, . . . , ln = en} | e.li | fix e
v ::= λx. e | c | {l1 = v1, . . . , ln = vn}
τ ::= int | τ → τ | {l1 : τ1, . . . , ln : τn}

e → e′ and Γ ` e : τ and τ1 ≤ τ2

(λx. e) v → e[v/x]
e1 → e′1

e1 e2 → e′1 e2

e2 → e′2
v e2 → v e′2

e → e′

fix e → fix e′ fix λx. e → e[fix λx. e/x]

{l1 = v1, . . . , ln = vn}.li → vi

ei → e′i
{l1 = v1, . . . , li−1 = vi−1, li = ei, . . . , ln = en} → {l1 = v1, . . . , li−1 = vi−1, li = e′i, . . . , ln = en}

Γ ` c : int Γ ` x : Γ(x)
Γ, x : τ1 ` e : τ2

Γ ` λx. e : τ1 → τ2

Γ ` e1 : τ2 → τ1 Γ ` e2 : τ2

Γ ` e1 e2 : τ1

Γ ` e : τ → τ

Γ ` fix e : τ

Γ ` e1 : τ1 . . . Γ ` en : τn labels distinct
Γ ` {l1 = e1, . . . , ln = en} : {l1 : τ1, . . . , ln : τn}

Γ ` e : {l1 : τ1, . . . , ln : τn} 1 ≤ i ≤ n

Γ ` e.li : τi

Γ ` e : τ τ ≤ τ ′

Γ ` e : τ ′

{l1:τ1, . . . , ln:τn, l:τ} ≤ {l1:τ1, . . . , ln:τn}

{l1:τ1, . . . , li−1:τi−1, li:τi, . . . , ln:τn} ≤ {l1:τ1, . . . , li:τi, li−1:τi−1, . . . , ln:τn}

τi ≤ τ ′i
{l1:τ1, . . . , li:τi, . . . , ln:τn} ≤ {l1:τ1, . . . , li:τ ′i , . . . , ln:τn}

τ3 ≤ τ1 τ2 ≤ τ4

τ1 → τ2 ≤ τ3 → τ4 τ ≤ τ

τ1 ≤ τ2 τ2 ≤ τ3

τ1 ≤ τ3

e ::= c | x | λx:τ . e | e e | Λα. e | e[τ]
τ ::= int | τ → τ | α | ∀α.τ
v ::= c | λx:τ . e | Λα. e

Γ ::= · | Γ, x:τ
∆ ::= · | ∆, α

e → e′ and ∆;Γ ` e : τ

e → e′

e e2 → e′ e2

e → e′

v e → v e′
e → e′

e[τ] → e′[τ] (λx:τ . e)v → e[v/x] (Λα. e)[τ] → e[τ/α]

∆; Γ ` x : Γ(x) ∆; Γ ` c : int

∆; Γ, x:τ1 ` e : τ2 ∆ ` τ1

∆; Γ ` λx:τ1. e : τ1 → τ2

∆, α; Γ ` e : τ1

∆; Γ ` Λα. e : ∀α.τ1

∆; Γ `e1 : τ2→τ1 ∆; Γ ` e2 : τ2

∆; Γ ` e1 e2 : τ1

∆; Γ `e : ∀α.τ1 ∆ ` τ2

∆; Γ ` e[τ2] : τ1[τ2/α]

2

Name:

e ::= . . . | A(e) | B(e) | (match e with Ax. e | Bx. e) | rollτ e | unroll e
τ ::= . . . | τ1 + τ2 | µα.τ
v ::= . . . | A(v) | B(v) | rollτ v

match A(v) with Ax. e1 | By. e2 → e1[v/x] match B(v) with Ax. e1 | By. e2 → e2[v/y]

e → e′

A(e) → A(e′)
e → e′

B(e) → B(e′)
e → e′

match e with Ax. e1 | By. e2 → match e′ with Ax. e1 | By. e2

unroll (rollµα.τ v) → v

e → e′

rollµα.τ e → rollµατ e′
e → e′

unroll e → unroll e′

∆; Γ ` e : τ1 + τ2 ∆; Γ, x:τ1 ` e1 : τ ∆; Γ, y:τ2 ` e2 : τ

∆; Γ ` match e with Ax. e1 | By. e2 : τ

∆; Γ ` e : τ1

∆; Γ ` A(e) : τ1 + τ2

∆; Γ ` e : τ2

∆; Γ ` B(e) : τ1 + τ2

∆; Γ ` e : τ [(µα.τ)/α]
∆; Γ ` rollµα.τ e : µα.τ

∆; Γ ` e : µα.τ

∆; Γ ` unroll e : τ [(µα.τ)/α]

Module Thread:

type t
val create : (’a -> ’b) -> ’a -> t
val join : t -> unit

Module Mutex:

type t
val create : unit -> t
val lock : t -> unit
val unlock : t -> unit

Module Event:

type ’a channel
type ’a event
val new_channel : unit -> ’a channel
val send : ’a channel -> ’a -> unit event
val receive : ’a channel -> ’a event
val choose : ’a event list -> ’a event
val wrap : ’a event -> (’a -> ’b) -> ’b event
val sync : ’a event -> ’a

3

Name:

1. (25 points) This problem uses System F extended with addition.

(a) Give the appropriate System F typing rule for addition expressions of the form e1 + e2. (This
should be easy and unrelated to the other problems.)

(b) Consider a typing context where:

• There are no type variables in scope.
• x is the only term variable in scope and it has type ∀α.α → α.

i. What does τ need to be for the program fragment x [τ] (λy : int. y + 7) 11 to typecheck?
(Recall application — of types or terms — associates to the left.)

ii. Given your choice for τ , what type does x [τ] (λy : int. y + 7) 11 have?
iii. Give a typing derivation for just x [τ] (not the entire program fragment; that’s too much

work) using the typing context described above.

(c) If v is an arbitrary value of type ∀α.α → α, then what might v [τ] (λy : int. y + 7) 11 evaluate to?

(d) If v is an arbitrary value such that v (λy : int. y + 7) 11 type-checks (notice v is no longer poly-
morphic), then:

i. What type does v have?
ii. What might v (λy : int. y + 7) 11 evaluate to?

Solution:

(a)

∆; Γ ` e1 : int ∆; Γ ` e2 : int

∆; Γ ` e1 + e2 : int

(b) i. τ must be int → int

ii. int
iii.

·;x:∀α.α → α ` x : ∀α.α → α

· ` int · ` int

· ` int → int

·;x:∀α.α → α ` x [int → int] : (int → int) → (int → int)

(c) It will always evaluate to 18 due to parametricity. In System F, any value of type ∀α.α → α is
totally equivalent to the identity function.

(d) i. (int → int) → (int → τ1) for any τ1. (Full credit given for (int → int) → (int → int) because
that’s what the instructor thought the answer was when he wrote the question.)

ii. It could produce any value whatsoever. (Full credit for, “It could produce any integer.”
because that’s what the instructor thought the answer was when he wrote the question.)

4

Name:

2. (20 points)

Consider a typed λ-calculus with sum types, pair types, recursive types, unit, and int.

(a) Define a type t1 for a binary tree of integers where:

• Each interior node has one integer and two children.
• Each leaf node has no data.

(b) Give a type t2 for a binary tree of integers where:

• Each node has one integer and two optional children (meaning each child may or may not be
another binary tree).

(c) Explain in English how there is exactly one value of type t1 that cannot be translated to an
equivalent value of type t2.

(d) Define the value you described in the previous problem using an actual λ-calculus expression.
Make sure your value has type t1.

Solution:

(a) µα.unit + (int ∗ α ∗ α)

(b) µα.int ∗ (unit + α) ∗ (unit + α)

(c) The empty tree can be represented with a value of type t1 but not with t2 because every t2 has
at least one int.

(d) (This answer varies depending how t1 is defined.) rollµα.unit+(int∗α∗α) A(())

5

Name:

3. (25 points)

Use Concurrent ML to complete an implementation of “infinite” arrays (in the sense that no index is
out of bounds), without using Caml’s references or arrays. More specifically, implement the new_array
function for this code:

(* Interface *)
type ’a myarray
val new_array : ’a -> ’a myarray (* Initially, every index maps to ’a *)
val set : ’a myarray -> int -> ’a -> unit (* change value in index *)
val get : ’a myarray -> int -> ’a (* return current value in index *)

(* Implementation *)
open Event
open Thread
type ’a myarray = ((int * (’a channel)) channel) * ((int * ’a) channel)

let new_array init = (* for you *)
let set (_,c) i v =

sync (send c (i,v))
let get (c,_) i =

let ret = new_channel() in
sync (send c (i,ret));
sync (receive ret)

Hints: Do not worry about being efficient. Have set work in O(1) time and get work in (worst-case)
O(n) time where n is the number of set operations preceding it. Use an association list. Sample
solution is about 15 lines, including a short helper function for traversing a list. Use choose and wrap.

Solution:

let rec assoc lst i default =
match lst with
[] -> default

| (j,v)::tl -> if i=j then v else assoc tl i default
let new_array init =

let getter,setter = new_channel(), new_channel() in
let rec server lst =

sync (choose [
wrap (receive getter)

(fun (i,c) -> (sync (send c (assoc lst i init))); server lst);
wrap (receive setter)

(fun pr -> server (pr::lst))
]) in

ignore (Thread.create server []); getter,setter

6

Name:

4. (20 points)

Consider a class-based OOP language like we did in class, but suppose methods do not have implicit
access to self (also known as this). More specifically:

• As usual, subclasses inherit the fields and methods of superclasses and can override methods. The
method-lookup rules are the same.

• As usual, we “confuse” classes and types, so a subclass is a subtype.

• Unlike in OOP, a method in class C has to take an explicit argument of type C to access any
fields/methods in its body. For example, instead of having a method like
int get_sum() { return self.x + self.y }
and calling it like
e.get_sum() (assuming the method is defined in a class C with fields x and y), we instead would
have to do something like
int get_sum(C obj) { return obj.x + obj.y }
and call it like
e.get_sum(e).

So, this is less convenient than OOP (notice how e.get_sum(e) has to repeat e), but more flexible
(since callers are not required to use the same e in both places).

(a) In this strange language, give an example showing how you want covariant subtyping on method
arguments in order for overriding methods to use the fact that they are defined in the subclass.

(b) Show how covariant subtyping on method arguments is unsound by giving a use of your example
from part (a) in which the program gets stuck even though it typechecks with covariant subtyping.

(c) In 1–3 sentences, explain why normal OOP does not have this “covariant subtyping is unsound,
but contravariant subtyping is not what you want” problem.

Solution:

(a) class C {
int m(C obj) { return 0; }

}
class D extends C {
int x;
int m(D obj) { return obj.x; }

}

When overriding m in class D we want the argument (which is playing the role of self) to have type
D, else we cannot access the x field. Since D≤C, we need covariant subtyping.

(b) C c = new D();
c.m(new C());

We use subsumption to assign a D object to c. The class definition of D allows m to override
since we have covariant subtyping and D≤C. But then we call c.m(new C()), which will get stuck
because the argument has no x field.

(c) In normal OOP, callers do not choose which object is bound to self. In e.m(), it must be e that
is bound to self in the body of the call, so if e’s class overrides m assuming self has a subtype
of what it has in the method being overridden, that assumption will always hold.

7

Name:

5. (6 points)

Consider a prototype-based (classless) approach to OOP as we did in class. Particularly recall how
method-lookup is defined in this approach. Explain how to create an object obj such that any object
derived from obj (either directly by have a parent slot holding obj or transitively) can have any method
called on it without a “method not found” error occurring.

Hints:

• This is a very short problem.

• Nontermination.

Solution:
Create a loop in the parent slot, so method-lookup will never terminate for methods not found in obj
or a derived object:

let obj = []
obj.parent = obj

8

