
CSE505: Graduate Programming Languages

Lecture 16 — Shared-Memory Parallelism and
Concurrency

Dan Grossman
Fall 2012

Concurrency and Parallelism

� PL support for concurrency/parallelism a huge topic
� Increasingly important (not traditionally in PL courses)
� Lots of active research as well as decades-old work

� We’ll just do explicit threads plus:
� Shared memory (locks and transactions)
� Futures
� Synchronous message passing (Concurrent ML)

� We’ll skip
� Process calculi (foundational message-passing)
� Asynchronous methods, join calculus, ...
� Data-parallel languages (e.g., NESL or ZPL)
� ...

� Mostly in ML syntax (inference rules where convenient)
� Even though current OCaml implementation has threads but

not parallelism

Dan Grossman CSE505 Fall 2012, Lecture 16 2

Concurrency vs. Parallelism

(Terminology not universal, but distinction paramount):

Concurrency is about correctly and efficiently managing access to
shared resources

� Examples: operating system, shared hashtable, version control
� Key challenge is responsiveness to external events that may

arrive asynchronously and/or simultaneously
� Often provide responsiveness via threads
� Often focus on synchronization

Parallelism is about using extra computational resources to do
more useful work per unit time

� Examples: scientific computing, most graphics, a lot of servers
� Key challenge is Amdahl’s Law (no sequential bottlenecks)
� Often provide parallelism via threads on different processors

and/or to mask I/O latency

Dan Grossman CSE505 Fall 2012, Lecture 16 3

Threads

High-level: “Communicating sequential processes”

Low-level: “Multiple stacks plus communication”

From OCaml’s thread.mli:

type t (*thread handle; remember we’re in module Thread*)

val create : (’a->’b) -> ’a -> t (* run new thread *)

val self : unit -> t (* what thread is executing this? *)

The code for a thread is in a closure (with hidden fields) and
Thread.create actually spawns the thread

Most languages make the same distinction, e.g., Java:

� Create a Thread object (data in fields) with a run method

� Call its start method to actually spawn the thread

Dan Grossman CSE505 Fall 2012, Lecture 16 4

Why use threads?

One OR more of:

1. Performance (multiprocessor or mask I/O latency)

2. Isolation (separate errors or responsiveness)

3. Natural code structure (1 stack awkward)

It’s not just performance

On the other hand, it seems fundamentally harder (for
programmers, language implementors, language designers,
semanticists) to have multiple threads of execution

Dan Grossman CSE505 Fall 2012, Lecture 16 5

One possible formalism (omitting thread-ids)

� Program state is one heap and multiple expressions

� Any ei might “take the next step” and potentially spawn a
thread

� A value in the “thread-pool” is removable

� Nondeterministic with interleaving granularity determined by
rules

Some example rules for H; e → H ′; e′; o (where o ::= · | e):

H; !l → H;H(l); ·
H; e1 → H ′; e′1; o

H; e1 e2 → H ′; e′1 e2; o

H; spawn(v1, v2) → H; 0; (v1 v2)

Dan Grossman CSE505 Fall 2012, Lecture 16 6

Formalism continued

The H; e → H ′; e′; o judgment is just a helper-judgment for
H; T → H ′; T ′ where T ::= · | e; T

H; e → H ′; e′; ·
H; e1; . . . ; e; . . . ; en → H ′; e1; . . . ; e′; . . . ; en

H; e → H ′; e′; e′′

H ′; e1; . . . ; e; . . . ; en → H ′; e1; . . . ; e′; . . . ; en; e′′

H; e1; . . . ; ei−1; v; ei+1; . . . ; en → H; e1; . . . ; ei−1; ei+1; . . . ; en

Program termination: H; ·

Dan Grossman CSE505 Fall 2012, Lecture 16 7

Equivalence just changed

Expressions equivalent in a single-threaded world are not
necessarily equivalent in a multithreaded context!

Example in OCaml:

let x, y = ref 0, ref 0 in

create (fun () -> if (!y)=1 then x:=(!x)+1) ();

create (fun () -> if (!x)=1 then y:=(!y)+1) () (* 1 *)

Can we replace line (1) with:

create (fun () -> y:=(!y)+1; if (!x)<>1 then y:=(!y)-1) ()

For more compiler gotchas, see “Threads cannot be implemented
as a library” by Hans-J. Boehm in PLDI2005

� Example: C bit-fields or other adjacent fields

Dan Grossman CSE505 Fall 2012, Lecture 16 8

Communication

If threads do nothing other threads need to “see,” we are done

� Best to do as little communication as possible

� E.g., do not mutate shared data unnecessarily, or hide
mutation behind easier-to-use interfaces

One way to communicate: Shared memory

� One thread writes to a ref, another reads it

� Sounds nasty with pre-emptive scheduling
� Hence synchronization mechanisms

� Taught in O/S for historical reasons!
� Fundamentally about restricting interleavings

Dan Grossman CSE505 Fall 2012, Lecture 16 9

Join

“Fork-join” parallelism a simple approach good for “farm out
subcomputations then merge results”

(* suspend caller until/unless arg terminates *)

val join : t -> unit

Common pattern:

val fork_join : (’a -> ’b array) -> (* divider *)

(’b -> ’c) -> (* conqueror *)

(’c array -> ’d) -> (* merger *)

’a -> (* data *)

’d

Apply the second argument to each element of the ’b array in
parallel, then use third argument after they are done.

See lec16code.ml for implementation and related patterns
(untested)

Dan Grossman CSE505 Fall 2012, Lecture 16 10

Futures

A different model for explicit parallelism without explicit shared
memory or message sends

� Easy to implement on top of either, but most models are
easily inter-implementable

� See ML file for implementation over shared memory

type ’a promise;

val future : (unit -> ’a) -> ’a promise (*do in parallel*)

val force : ’a promise -> ’a (*may block*)

Essentially fork/join with a value returned?

� Returning a value more functional

� Less structured than “cobegin s1; s2; ... sn” form of fork/join

Dan Grossman CSE505 Fall 2012, Lecture 16 11

Locks (a.k.a. mutexes)

(* mutex.mli *)

type t (* a mutex *)

val create : unit -> t

val lock : t -> unit (* may block *)

val unlock : t -> unit

OCaml locks do not have two common features:

� Reentrancy (changes semantics of lock and unlock)

� Banning nonholder release (changes semantics of unlock)

Also want condition variables (condition.mli), not discussed here

Dan Grossman CSE505 Fall 2012, Lecture 16 12

Using locks

Among infinite correct idioms using locks (and more incorrect
ones), the most common:

� Determine what data must be “kept in sync”

� Always acquire a lock before accessing that data and release it
afterwards

� Have a partial order on all locks and if a thread holds m1 it
can acquire m2 only if m1 < m2

See canonical “bank account” example in lec16code.ml

Coarser locking (more data with same lock) trades off parallelism
with synchronization

� Under-synchronizing the hallmark of concurrency incorrectness

� Over-synchronizing the hallmark of concurrency inefficiency

Dan Grossman CSE505 Fall 2012, Lecture 16 13

The Evolution Problem

Write a new function that needs to update o1 and o2 together.
� What locks should you acquire? In what order?
� There may be no answer that avoids races and deadlocks

without breaking old code. (Need a stricter partial order.)
� Race conditions: See definitions later in lecture
� Deadlock: Cycle of threads blocked forever

See xfer code in lec16code.ml

Real Java example:

synchronized append(StringBuffer sb) {

int len = sb.length(); //synchronized

if(this.count+len > this.value.length) this.expand(...);

sb.getChars(0,len,this.value,this.count); //synchronized

...

}

Undocumented in 1.4; in 1.5 caller synchronizes on sb if necessary
Dan Grossman CSE505 Fall 2012, Lecture 16 14

Atomic Blocks (Software Transactions)

Java-like: atomic { s }

OCaml-like: atomic : (unit -> ’a) -> ’a

Execute the body/thunk as though no interleaving from other
threads

� Allow parallelism unless there are actual run-time memory
conflicts (detect and abort/retry)

� Convenience of coarse-grained locking with parallelism of
fine-grained locking (or better)

� But language implementation has to do more to detect
conflicts (much like garbage collection is convenient but has
costs)

Most research on implementation (preserve parallelism unless there
are conflicts), but this is not an implementation course

Dan Grossman CSE505 Fall 2012, Lecture 16 15

Transactions make things easier

Problems like append and xfer become trivial

So does mixing coarse-grained and fine-grained operations (e.g.,
hashtable lookup and hashtable resize)

Transactions are great, but not a panacea:

� Application-level races can remain

� Application-level deadlock can remain

� Implementations generally try-and-abort, which is hard for
“launch missiles” (e.g., I/O)

� Many software implementations provide a weaker and
under-specified semantics if there are data races with
non-transactions

� Memory-consistency model questions remain and may be
worse than with locks...

Dan Grossman CSE505 Fall 2012, Lecture 16 16

Data races, informally

[More formal definition to follow]

“race condition” means two different things

• Data race: Two threads read/write, write/read, or write/write the
same location without intervening synchronization
– So two conflicting accesses could happen “at the same time”
– Better name not used: simultaneous access error

• Bad interleaving: Application error due to thread scheduling

– Different order would not produce error
– A data-race free program can have bad interleavings

 Fall 2012 17 Dan Grossman, CSE505

Bad interleaving example

Fall 2012 18 Dan Grossman, CSE505

class Stack<E> {
 … // state used by isEmpty, push, pop
 synchronized boolean isEmpty() { … }
 synchronized void push(E val) { … }
 synchronized E pop() { … }
 E peek() { // this is wrong
 E ans = pop();
 push(ans);
 return ans;
 }
}

E ans = pop();

push(ans);

return ans;

push(x)
boolean b = isEmpty()

Ti
m

e

Thread 2 Thread 1 (peek)

Consistent locking

If all mutable, thread-shared memory is consistently guarded by
some lock, then data races are impossible

But:

– Bad interleavings can remain: programmer must make
critical sections large enough

– Consistent locking is sufficient but not necessary
• A tool detecting consistent-locking violations might report

“problems” even if no data races are possible

Fall 2012 19 Dan Grossman, CSE505

Data races, more formally

Let threads T1, …, Tn perform actions:
– Read shared location x
– Write shared location x
– [Successfully] Acquire lock m
– Release lock m
– Thread-local actions (local

variables, control flow, arithmetic)
• Will ignore these

Order in one thread is program order

– Legal orders given by language’s
single-threaded semantics + reads

 Fall 2012 20 Dan Grossman, CSE505

wr(x)

rel(m)

rd(z)

rd(x)

T1 T2

rd(y)

wr(y)

acq(m)

wr(x)

Data races, more formally

Execution [trace] is a partial order over
actions a1 < a2

– Program order: If Ti performs a1
before a2, then a1 < a2

– Sync order: If a2=(Ti acquires m)
occurs after a1=(Tj releases m), then
a1 < a2

– Transitivity: If a1 < a2 and a2 < a3,
then a1 < a3

Called the happens-before relation

 Fall 2012 21 Dan Grossman, CSE505

wr(x)

rel(m)

rd(z)

rd(x)

T1 T2

rd(y)

wr(y)

acq(m)

wr(x)

Data races, more formally

• Two actions conflict if they read/write,
write/read, or write/write the same location
– Different locations not a conflict
– Read/read not a conflict

Fall 2012 22 Dan Grossman, CSE505

wr(x)

rel(m)

rd(z)

rd(x)

T1 T2

rd(y)

wr(y)

acq(m)

wr(x)

Data races, more formally

• Finally, a data race is two conflicting
actions a1 and a2 unordered by the
happens-before relation
– a1 < a2 and a2 < a1
– By definition of happens-before, actions

will be in different threads
– By definition of conflicting, will be

read/write, write/read, or write/write

• A program is data-race free if no trace on
any input has a data race

 Fall 2012 23 Dan Grossman, CSE505

wr(x)

rel(m)

rd(z)

rd(x)

T1 T2

rd(y)

wr(y)

acq(m)

wr(x)

/ /

Beyond locks

Notion of data race extends to synchronization other than locks
– Just define happens-before appropriately

Examples:
– Thread fork
– Thread join
– Volatile variables

Fall 2012 24 Dan Grossman, CSE505

Why care about data races?

Recall not all race conditions are data races…
So why focus on data races?

• One answer: Find some bugs without application-specific knowledge

• More interesting: Semantics for modern languages very relaxed for

programs with data races
– Else optimizing compilers and hardware too difficult in practice
– Increases importance of writing data-race-free programs

Fall 2012 25 Dan Grossman, CSE505

An example

Can the assertion fail?

Fall 2012 26 Dan Grossman, CSE505

// shared memory
a = 0; b = 0;

// Thread 1
x = a + b;
y = a;
z = a + b;
assert(z>=y);

// Thread 2
b = 1;
a = 1;

An example

Can the assertion fail?

Fall 2012 27 Dan Grossman, CSE505

// shared memory
a = 0; b = 0;

// Thread 1
x = a + b;
y = a;
z = a + b;
assert(z>=y);

// Thread 2
b = 1;
a = 1;

– Argue assertion cannot fail:
 a never decreases and b is never negative, so z>=y
– But argument makes implicit assumptions you cannot make

in Java, C#, C++, etc. (!)

Common-subexpression elimination

Compilers simplify/optimize code in many ways, e.g.:

Fall 2012 28 Dan Grossman, CSE505

// shared memory
a = 0; b = 0;

// Thread 1
x = a + b;
y = a;
z = a + b; x;
assert(z>=y);

// Thread 2
b = 1;
a = 1;

Now assertion can fail
– As though third read of a precedes second read of a
– Many compiler optimizations have the effect of

reordering/removing/adding memory operations like this
(exceptions: constant-folding, function inlining, …)

A decision…

Fall 2012 29 Dan Grossman, CSE505

// shared memory
a = 0; b = 0;

// Thread 1
x = a + b;
y = a;
z = a + b; x;
assert(z>=y);

// Thread 2
b = 1;
a = 1;

Language semantics must resolve this tension:
– If assertion can fail, the program is wrong
– If assertion cannot fail, the compiler is wrong

Memory-consistency model

• A memory-consistency model (or memory model) for a shared-
memory language specifies which write a read can see
– Essential part of language definition
– Widely under-appreciated until last several years

• Natural, strong model is sequential consistency (SC) [Lamport]

– Intuitive “interleaving semantics” with a global memory

 “the results of any execution is the same as if the operations of
 all the processors were executed in some sequential order,
 and the operations of each individual processor appear in this
 sequence in the order specified by its program”

Fall 2012 30 Dan Grossman, CSE505

Considered too strong

• Under SC, compiler is wrong in our example
– Must disable any optimization that has effect of reordering

memory operations [on mutable, thread-shared memory]

• So modern languages do not guarantee SC
– Another reason: Disabling optimization insufficient because

the hardware also reorders memory operations unless you
use very expensive (10x-100x) instructions

• But still need some language semantics to reason about programs…

Fall 2012 31 Dan Grossman, CSE505

The “grand compromise”

• Basic idea:
– Guarantee SC only for “correctly synchronized” programs [Adve]
– Rely on programmer to synchronize correctly
– Correctly synchronized == data-race free (DRF)!

• More precisely:

If every SC execution of a program P has no data races,
then every execution of P is equivalent to an SC execution
– Notice we use SC to decide if P has data races

• Known as “DRF implies SC”

Fall 2012 32 Dan Grossman, CSE505

Roles under the compromise

• Programmer: write a DRF program
• Language implementor: provide SC assuming program is DRF

But what if there is a data race:

– C++: anything can happen
• “catch-fire semantics”
• Just like array-bounds errors, uninitialized data, etc.

– Java/C#: very complicated story
• Preserve safety/security despite reorderings
• “DRF implies SC” a theorem about the very-complicated

definition

Fall 2012 33 Dan Grossman, CSE505

Back to the example

Code has a data race, so program is wrong and compiler is justified

Fall 2012 34 Dan Grossman, CSE505

// shared memory
a = 0; b = 0;

// Thread 1
x = a + b;
y = a;
z = a + b; x;
assert(z>=y);

// Thread 2
b = 1;
a = 1;

Back to the example

This version is DRF, so the “optimization” is illegal
– Compiler would be wrong: assertion must not fail

Fall 2012 35 Dan Grossman, CSE505

// shared memory
a = 0; b = 0;
m a lock

// Thread 1
sync(m){x = a + b;}
sync(m){y = a;}
sync(m){z = a + b;}
assert(z>=y);

// Thread 2
sync(m){b = 1;}
sync(m){a = 1;}

Back to the example

This version is DRF, but the optimization is legal because it does
not affect observable behavior: the assertion will not fail

Fall 2012 36 Dan Grossman, CSE505

// shared memory
a = 0; b = 0;
m a lock

// Thread 1
sync(m){
 x = a + b;
 y = a;
 z = a + b; x;
}
assert(z>=y);

// Thread 2
sync(m){
 b = 1;
 a = 1;
}

Back to the example
This version is also DRF and the optimization is illegal

– Volatile fields (cf. C++ atomics) exist precisely for writing
“clever” code like this (e.g., lock-free data structures)

Fall 2012 37 Dan Grossman, CSE505

// shared memory
volatile int a, b;
a = 0;
b = 0;

// Thread 1
x = a + b;
y = a;
z = a + b;
assert(z>=y);

// Thread 2
b = 1;
a = 1;

So what is allowed?

How can language implementors know if an optimization obeys “DRF
implies SC”? Must be aware of threads! [Boehm]

Basically 2.5 rules suffice, without needing inter-thread analysis:

0. Optimization must be legal for single-threaded programs

1. Do not move shared-memory accesses across lock acquires/releases
– Careful: A callee might do synchronization
– Can relax this slightly [Effinger-Dean et al 2012]

2. Never add a memory operation not in the program [Boehm]
– Seems like it would be strange to do this, but there are some non-

strange examples (cf. homework problem)

Fall 2012 38 Dan Grossman, CSE505

Thread-local or immutable memory

• All these issues go away for memory the compiler knows is
thread-local or immutable
– Could be via static analysis, programmer annotations, or

using a mostly functional language

• If the default were thread-local or immutable, maybe we could
live with less/no optimization on thread-shared-and-mutable
– But harder to write reusable libraries

• Most memory is thread-local, just too hard for the compiler to be

sure

Fall 2012 39 Dan Grossman, CSE505

