
CSE505: Graduate Programming Languages

Lecture 13 —
Evaluation Contexts

First-Class Continuations
Continuation-Passing Style

Dan Grossman
Fall 2012

Gimme A Break (from types)

We have more to do with type systems:

� Subtyping

� Parametric Polymorphism

� Recursive Types (?)

� Type-And-Effect Systems (??)

But sometimes it’s more fun to mix up the lecture schedule

This lecture: Related topics that work in typed or untyped
settings:

� How operational semantics can be defined more concisely

� How lambda-calculus (or PLs) can be enriched with first-class
continuations, a powerful control operator

� Cool programming idioms related to these concepts

Dan Grossman CSE505 Fall 2012, Lecture 13 2

Toward Evaluation Contexts

λ-calculus with extensions has many “boring inductive rules”:

e1 → e′1
e1 e2 → e′1 e2

e2 → e′2
v e2 → v e′2

e → e′

A(e) → A(e′)
e → e′

B(e) → B(e′)

e1 → e′1
(e1, e2) → (e′1, e2)

e2 → e′2
(v1, e2) → (v1, e

′
2)

e → e′

e.1 → e′.1
e → e′

e.2 → e′.2

e → e′

match e with Ax. e1 | By. e2 → match e′ with Ax. e1 | By. e2
And some “interesting do-work rules”:

(λx. e) v → e[v/x] (v1, v2).1 → v1 (v1, v2).2 → v2

match A(v) with Ax. e1 | By. e2 → e1[v/x]

match B(v) with Ay. e1 | Bx. e2 → e2[v/x]

Dan Grossman CSE505 Fall 2012, Lecture 13 3

Evaluation Contexts

Define evaluation contexts, which are expressions with one hole
where “interesting work” is allowed to occur:

E ::= [·] | E e | v E | (E, e) | (v, E) | E.1 | E.2
| A(E) | B(E) | (match E with Ax. e1 | By. e2)

Define “filling the hole” E[e] in the obvious way (stapling)
� A metafunction of type EvalContext→Exp→Exp

Semantics: Use two judgments

� e → e′ with 1 rule:
e

p→ e′

E[e] → E[e′]
� e

p→ e′ with all the “interesting work”:

(λx. e) v
p→ e[v/x] (v1, v2).1

p→ v1 (v1, v2).2
p→ v2

match A(v) with Ax. e1 | By. e2 p→ e1[v/x]

match B(v) with Ay. e1 | Bx. e2 p→ e2[v/x]
Dan Grossman CSE505 Fall 2012, Lecture 13 4

Decomposition

Evaluation relies on decomposition (unstapling the correct subtree)

� Given e, find E, ea, e
′
a such that e = E[ea] and ea

p→ e′a

Theorem (Unique Decomposition): There is at most one
decomposition of e

� Hence evaluation is deterministic since at most one primitive
step can apply to any expression

Theorem (Progress, restated): If e is well-typed, then there is a
decomposition or e is a value

Dan Grossman CSE505 Fall 2012, Lecture 13 5

Evaluation Contexts: So what?

Small-step semantics (old) and evaluation-context semantics (new)
are very similar:

� Totally equivalent step sequence
� (made both left-to-right call-by-value)

� Just rearranged things to be more concise: Each boring rule
became a form of E

� Both “work” the same way:
� Find the next place in the program to take a “primitive step”
� Take that step
� Plug the result into the rest of the program
� Repeat (next “primitive step” could be somewhere else) until

you can’t anymore (value or stuck)

Evaluation contexts so far just cleanly separate the “find and plug”
from the “take that step” by building an explicit E

Dan Grossman CSE505 Fall 2012, Lecture 13 6

Continuations

Now that we have defined E explicitly in our metalanguage, what
if we also put it on our language

� From metalanguage to language is called reification

First-class continuations in one slide:

e ::= . . . | letcc x. e | throw e e | cont E
v ::= . . . | cont E
E ::= . . . | throw E e | throw v E

E[letcc x. e] → E[(λx. e)(cont E)] E[throw (cont E′) v] → E′[v]

� New operational rules for → not
p→ because “the E matters”

� letcc x. e grabs the current evaluation context (“the stack”)

� throw (cont E′) v restores old context: “jump somewhere”

� cont E not in source programs: “saved stack (value)”

Dan Grossman CSE505 Fall 2012, Lecture 13 7

Examples (exceptions-like)

1 + (letcc k. 2 + 3) →∗ 6

1 + (letcc k. 2 + (throw k 3)) →∗ 4

1 + (letcc k. (throw k (2 + 3))) →∗ 6

1 + (letcc k. (throw k (throw k (throw k 2)))) →∗ 3

Dan Grossman CSE505 Fall 2012, Lecture 13 8

Example (“time travel”)

Caml doesn’t have first-class continuations, but if it did:

let valOf x = match x with None-> failwith "" |Some x-> x

let x = ref true (* avoids infinite loop)

let g = ref None

let y = ref (1 + 2 + (letcc k. (g := Some k); 3))

let z = if !x

then (x := false; throw (valOf (!g)) 7)

else !y

SML/NJ does: This runs and binds 10 to z:

open SMLofNJ.Cont

val x = ref true (* avoids infinite loop *)

val g : int cont option ref = ref NONE

val y = ref (1 + 2 + (callcc (fn k => ((g := SOME k); 3))))

val z = if !x then (x := false; throw (valOf (!g)) 7) else !y

Dan Grossman CSE505 Fall 2012, Lecture 13 9

Is this useful?

First-class continuations are a single construct sufficient for:

� Exceptions

� Cooperative threads (including coroutines)
� “yield” captures the continuation (the “how to resume me”)

and gives it to the scheduler (implemented in the language),
which then throws to another thread’s “how to resume me”

� Other crazy things
� Often called the “goto of functional programming” —

incredibly powerful, but nonstandard uses are usually
inscrutable

� Key point is that we can “jump back in” unlike boring-old
exceptions

Dan Grossman CSE505 Fall 2012, Lecture 13 10

Another view

If you’re confused, think call stacks:

� What if your favorite language had operations for:
� Store current stack in x
� Replace current stack with stack in x

� “Resume the stack’s hole” with something different or when
mutable state is different

� Else you are sure to have an infinite loop since you will later
resume the stack again

Dan Grossman CSE505 Fall 2012, Lecture 13 11

Where are we

Done:

� Redefined our operational semantics using evaluation contexts

� That made it easy to define first-class continuations

� Example uses of continuations

Now: Rather than adding a powerful primitive, we can achieve the
same effect via a whole-program translation into a sublanguage
(source-to-source transformation)

� No expressions with nontrivial evaluation contexts

� Every expression becomes a continuation-accepting function

� Never “return” — instead call the current continuation

� Will be able to reintroduce letcc and throw as O(1)
operations

Dan Grossman CSE505 Fall 2012, Lecture 13 12

The CPS transformation (one way to do it)

A metafunction from expressions to expressions

Example source language (other features similar):

e ::= x | λx. e | e e | c | e + e
v ::= x | λx. e | c

CPSE(v) = λk. k CPSV(v)
CPSE(e1 + e2) = λk. CPSE(e1) λx1. CPSE(e2) λx2. k (x1+x2)

CPSE(e1 e2) = λk. CPSE(e1) λf. CPSE(e2) λx. f x k

CPSV(c) = c
CPSV(x) = x

CPSV(λx. e) = λx. λk. CPSE(e) k

To run the whole program e, do CPSE(e) λx. x

Dan Grossman CSE505 Fall 2012, Lecture 13 13

Result of the CPS transformation

� Correctness: e is equivalent to CPSE(e) λx. x

� If whole program has type τP and e has type τ , then
CPSE(e) has type (τ → τP) → τP

� Fixes evaluation order: CPSE(e) will evaluate e in
left-to-right call-by-value

� Other similar transformations encode other evaluation orders
� Every intermediate computation is bound to a variable (helpful

for compiler writers)

� For all e, evaluation of CPSE(e) stays in this sublanguage:

e ::= v | v v | v v v | v (v + v)
v ::= x | λx. e | c

� Hence no need for a call-stack: every call is a tail-call
� Now the program is maintaining the evaluation context via a

closure that has the next “link” in its environment that has the
next “link” in its environment, etc.

Dan Grossman CSE505 Fall 2012, Lecture 13 14

Encoding first-class continuations

If you apply the CPS transform, then letcc and throw can become
O(1) operations encodable in the source language

CPSE(letcc k. e) = λk. CPSE(e) k
CPSE(throw e1 e2) = λk. CPSE(e1) λx1. CPSE(e2) λx2. x1 x2

︸ ︷︷ ︸

or just x1

� letcc gets passed the current continuation just as it needs

� throw ignores the current continuation just as it should

You can also manually program in this style (fully or partially)

� Has other uses as a programming idiom too...

Dan Grossman CSE505 Fall 2012, Lecture 13 15

A useful advanced programming idiom

� A first-class continuation can “reify session state” in a
client-server interaction

� If the continuation is passed to the client, which returns it
later, then the server can be stateless

� Suggests CPS for web programming
� Better: tools that do the CPS transformation for you

� Gives you a “prompt-client” primitive without server-side state

� Because CPS uses only tail calls, it avoids deep call stacks
when traversing recursive data structures

� See lec13code.ml for this and related idioms

In short, “thinking in terms of CPS” is a powerful technique few
programmers have

Dan Grossman CSE505 Fall 2012, Lecture 13 16

