
'

&

$

%

CSE 505: Concepts of Programming Languages

Dan Grossman

Fall 2007

Lecture 16

Object-Oriented Programming

Dan Grossman CSE505 Fall 2007, Lecture 16 1



'

&

$

%

Don’t Believe the Hype

OOP lets you:

1. Build some extensible software concisely

2. Exploit an intuitive analogy between interaction of physical

entities and interaction of software pieces

It also:

• Raises tricky semantic and style issues that require careful PL

investigation.

• Is more complicated than functions

– Not necessarily worse, but I’m skeptical that all those accessor

methods are “productive”

Dan Grossman CSE505 Fall 2007, Lecture 16 2



'

&

$

%

So what is OOP?
OOP “looks like this”, but what’s the essence?

class Point1 extends Object {

int x;

int get_x() { x }

unit set_x(int y) { self.x = y }

int distance(Point1 p) { p.get_x() - self.get_x() }

constructor() { x = 0; }

}

class Point2 extends Point1 {

int y;

int get_y() { y }

int get_x() { 34+super.get_x() }

constructor() { super(); y=0; }

}

Dan Grossman CSE505 Fall 2007, Lecture 16 3



'

&

$

%

OOP can mean many things

• An ADT (private fields)

• Subtyping

• Inheritance, method/field extension, method override

• Implicit this/self

• Dynamic dispatch

• All the above (plus constructor(s)) with 1 class declaration

Design question: Better to have small orthogonal features or one “do

it all” feature?

Anyway, let’s consider how “unique to OO” each is. . .

Dan Grossman CSE505 Fall 2007, Lecture 16 4



'

&

$

%

OO as ADT-focused
Object/class members (fields, methods, constructors) often have

visibilities

What code can invoke a method/access a field? Other methods in

same object, other methods in same class, a subclass, within some

other boundary (e.g., a package), any code, . . .

With just classes, the only other way to hide a member is cast to

supertype. With interfaces (which are more like record types), we can

hide members more selectively:

interface I { int distance(Point1 p); }

class Point1 implements I { ... I f() { self } ... }

(This all assumes no downcasts, reflection, etc.)

Previously we saw objects are a bad match for “strong binary methods”

• distance takes a Point1, not an I

Dan Grossman CSE505 Fall 2007, Lecture 16 5



'

&

$

%

Records with private fields

If OOP = functions + private fields, we already have it

• But it’s more (e.g., inheritance)

type t = { get_x : unit -> int;

set_x : int -> unit;

distance : t -> int }

let point1_constructor () =

let x = ref 0 in

let rec self =

{ get_x = (fun () -> !x);

set_x = (fun y -> x := y);

distance = (fun p -> p.get_x() - self.get_x() )

}

in self

Dan Grossman CSE505 Fall 2007, Lecture 16 6



'

&

$

%

Subtyping

Most class-based OO languages “confuse” classes and types:

• If C is a class, then C is a type.

• If C extends D (via declaration), then C ≤ D.

• Subtyping is (only) the reflexive, transitive closure of this.

Is this novel? If C adds members, that’s width subtyping.

This is “by name” subtyping. If classes C1 and C2 are incomparable

in the class hierarchy they are incomparable types, even if they have

the same members.

Dan Grossman CSE505 Fall 2007, Lecture 16 7



'

&

$

%

Subtyping, continued

If C extends D and overrides a method of D, what restrictions should

we have?

• Argument types contravariant (assume less about arguments)

• Result type covariant (provide more about result)

Many “real” languages are even more restrictive

• Often in favor of static overloading

Some bend over backward to be more flexible

• At expense of run-time checks/casts/failures

It’s good we studied this in a simpler setting

Dan Grossman CSE505 Fall 2007, Lecture 16 8



'

&

$

%

Inheritance and Override

Subclasses:

1. inherit fields and methods of superclass

2. can override methods

3. can use super calls (a.k.a. resends)

Can we code this up in Caml?

• No because of field-name reuse and lack of subtyping, but ignoring

that and trying is illuminating...

Dan Grossman CSE505 Fall 2007, Lecture 16 9



'

&

$

%

Attempting Inheritance

let point1_constructor () =

let x = ref 0 in

let rec self =

{ get_x = (fun () -> !x);

set_x = (fun y -> x := y);

distance = (fun p -> p.get_x() - self.get_x() )

} in self

(* note: field reuse precludes type-checking *)

let point2_constructor () =

let r = point1_constructor () in

let y = ref 0 in

let rec self =

{ get_x = (fun () -> 34 + r.get_x());

distance = r.distance;

... } in self

Dan Grossman CSE505 Fall 2007, Lecture 16 10



'

&

$

%

Problems

Small problems:

• Have to change point2 code when point1 changes.

– But OOPs have tons of “fragile base class” issues too.

• No direct access to “private fields” of super-class

Big problem:

• Distance method in pt2 doesn’t behave how it does in OOP!!!

– We do not have late-binding of self (i.e., dynamic dispatch)

Dan Grossman CSE505 Fall 2007, Lecture 16 11



'

&

$

%

The essence

Claim: Class-based object are:

• So-so ADTs

• Same-old record and function subtyping

• Some syntactic sugar for extension and override

And:

• A fundamentally different rule for what self maps to in the

environment

Dan Grossman CSE505 Fall 2007, Lecture 16 12



'

&

$

%

More on late binding

Late-binding, dynamic dispatch, and open recursion are all essentially

synonyms. The simplest example I know:

Functional (even still O(n)) vs. OO (even now O(1)):

let c1() = let rec r = {

even i = if i > 0 then r.odd (i-1) else true;

odd i = if i > 0 then r.even (i-1) else false} in r

let c2() = let r1 = c1() in

let rec r = {even = r1.even; odd i = i % 2 == 1} in r

class C1 {

int even(int i) {if i>0 then odd(i-1) else true}

int odd(int i) {if i>0 then even(i-1) else false} }

class C2 extends C1 {

int odd(int i) {i % 2 == 1} }

Dan Grossman CSE505 Fall 2007, Lecture 16 13



'

&

$

%

The big debate

Open recursion:

• Code reuse: improve even by just changing odd

• Superclass has to do less extensibility planning

Closed recursion:

• Code abuse: break even by just breaking odd

• Superclass has to do more abstraction planning

Reality: Both have proved very useful; should probably just argue over

“the right default”

Dan Grossman CSE505 Fall 2007, Lecture 16 14



'

&

$

%

Where We’re Going

Now we know overriding and dynamic dispatch is the interesting part

of the expression language. Now:

• How exactly do we define method dispatch?

• How do we use overriding for extensible software?

• Revisiting “subtyping is subclassing”

– Why contra/covariance is useful

– Interfaces or object types for more subtyping

– Subclassing-not-subtyping for more code reuse

Dan Grossman CSE505 Fall 2007, Lecture 16 15



'

&

$

%

Defining Dispatch

We want correct definitions, not super-efficient compilation techniques.

Methods take “self” as an argument. (Compile down to functions

taking an extra argument.) So just need self bound to the right thing.

Approach 1:

• Each object has 1 “code pointer” per method.

• For new C() where C extends D:

– Start with code pointers for D (inductive definition!)

– If C adds m, add code pointer for m

– If C overrides m, change code pointer for m

• self bound to the (whole) object in method body.

Dan Grossman CSE505 Fall 2007, Lecture 16 16



'

&

$

%

Dispatch continued

Approach 2:

• Each object has 1 “run-time tag”.

• For new C() where C extends D, tag is C.

• self bound to the (whole) object in method body.

• Method call to m reads tag, looks up (tag,m) in a global table

Both approaches model dynamic-dispatch and are routinely formalized

in PL papers. Real implementations are a little more clever.

Difference in approaches only observable in languages with run-time

adding/removing/changing of methods.

Informal claim: This is hard to explain to freshmen, but in the

presence of overriding, no simpler definition is correct.

• Else it’s not OOP and overriding leads to faulty reasoning

Dan Grossman CSE505 Fall 2007, Lecture 16 17



'

&

$

%

Overriding and Hierarchy Design

Subclass writer decides what to override to modify behavior.

• Often-claimed unchecked style issue: overriding should specialize

behavior

But superclass writer often has ideas on what will be overridden.

Leads to abstract methods (must override) and abstract classes:

• An abstract class has > 0 abstract methods

• Overriding an abstract method makes it non-abstract

• Cannot call constructor of an abstract class

Adds no expressiveness (superclass could implement method to raise

an exception), but uses static checking to enforce an idiom and saves

you a handful of keystrokes.

Dan Grossman CSE505 Fall 2007, Lecture 16 18



'

&

$

%

Overriding for Extensibility

A PL example:

class Exp {

abstract Exp eval(Env);

abstract Typ typecheck(Ctxt);

abstract Int toInt();

}

class IntExp extends class Exp {

Int i;

Exp eval(Env e) { self }

Typ typecheck(Ctxt c) { new IntTyp() }

Int toInt() { i }

constructor(Int _i) { i=_i }

}

Dan Grossman CSE505 Fall 2007, Lecture 16 19



'

&

$

%

Example Continued
class AddExp extends class Exp {

Exp e1;

Exp e2;

Exp eval(Env e) {

new IntExp(e1.eval(e).toInt().add(

e2.eval(e).toInt())); }

Typ typecheck(Ctxt c) {

if(e1.typecheck(c).equals(new IntTyp()) &&

e2.typecheck(c).equals(new IntTyp()))

new IntTyp()

else raise new TypeError() }

Int toInt() { throw new BadCall() }

}

“Impure” OO may have a plus primitive (not a method call)

Dan Grossman CSE505 Fall 2007, Lecture 16 20



'

&

$

%

Pure OO continued

Can make everything an object and all primitives method calls (cf.

Smalltalk, Ruby, ...)

Example: true and false are objects with ifThenElse methods

e1.typecheck(c).equals(new IntTyp()).ifThenElse(

e2.typecheck(c).equals(new IntTyp()).ifThenElse(

(fun () -> new IntTyp()),

(fun () -> throw new TypeError())),

(fun () -> throw new TypeError()))

Essentially identical to our encoding of booleans in lecture 6 with

explicitly delayed evaluation.

• Closures are just objects with one method, perhaps called “apply”

Dan Grossman CSE505 Fall 2007, Lecture 16 21



'

&

$

%

Extending the example

Now suppose we want MultExp

• No change to existing code, unlike ML!

• In ML, we would have to “prepare” with an “Else” variant and

make Exp a type-constructor

– In general, requires very fancy acrobatics

Now suppose we want a toString method

• Must change all existing classes, unlike ML!

• In OOP, we would have to “prepare” with a “Visitor pattern”.

– In general, requires very fancy acrobatics

Extensibility has many dimensions — most require forethought!

• (Recall hand-drawn picture of the grid.)

Dan Grossman CSE505 Fall 2007, Lecture 16 22



'

&

$

%

Yet more example

Now consider actually adding MultExp.

If you have MultExp extend Exp, you will copy typecheck from

AddExp.

If you have MultExp extend AddExp, you don’t copy. The AddExp

implementer was not expecting that. May be brittle; generally

considered bad style.

Best (?) of both worlds by refactoring with an abstract BinIntExp

class implementing typecheck. So we choose to change AddExp

when we add MultExp.

This intermediate class is a fairly heavyweight way to use a helper

function.

Dan Grossman CSE505 Fall 2007, Lecture 16 23



'

&

$

%

Revisiting Subclassing is Subtyping

Recall we have been “confusing” classes and types: C is a class and a

type and if C extends D then C is a subtype of D.

Therefore, if C overrides f, the type of f in C must be a subtype of

the type of f in D. Just like functions, method-subtyping is

contravariant arguments and covariant results.

If code knows it has a C, it can call f with “more” arguments and

know there are “fewer” results.

Dan Grossman CSE505 Fall 2007, Lecture 16 24



'

&

$

%

Subtyping and Dynamic Dispatch

We defined dynamic dispatch in terms of functions taking self as an

argument.

But unlike other arguments, self is covariant! (Else overriding method

couldn’t access new fields/methods.)

This is sound because self must be passed, not another value with the

supertype.

This is the key reason encoding OO in a typed λ-calculus requires

ingenuity, fancy types, and/or run-time cost.

(We won’t even attempt it.)

Dan Grossman CSE505 Fall 2007, Lecture 16 25



'

&

$

%

More subtyping

With single-inheritance and the class/type confusion, we don’t get all

the subtyping we want. Example: Taking any object that has an f

method from int to int.

Interfaces help somewhat, but class declarations must still say they

implement an interface.

Object-types bring the flexibility of structural subtyping to OO. For

example, class Exp has a type with two methods (certain names,

certain types) and several supertypes (fewer methods, methods taking

more restricted arguments, etc.)

With object-types, “subclassing implies subtyping”

Dan Grossman CSE505 Fall 2007, Lecture 16 26



'

&

$

%

More subclassing

Breaking one direction of “subclassing = subtyping” allowed more

subtyping (so more code reuse).

Breaking the other direction (“subclassing does not imply subtyping”)

allows more inheritance (so more code reuse).

Simple idea: If C extends D and overrides a method in a way that

makes C ≤ D unsound, then C 6≤ D. This is useful:

class P1 { ... Int get_x(); Int compare(P1); ... }

class P2 extends Point1 { ... Int compare(P2); ... }

This is not always correct – may need to re-typecheck get_x in P2 in

case it assumes a type for compare.

Dan Grossman CSE505 Fall 2007, Lecture 16 27



'

&

$

%

Where we are

Summary of last 4 slides: Separating types and classes expands the

language, but clarifies the concepts:

• Typing is about interfaces, subtyping about wider interfaces

• Inheritance (a.k.a. subclassing) is about code-sharing

Combining typing and inheritance restricts both.

• Most OO languages purposely confuse subtyping (about

type-checking) and inheritance (about code-sharing)

• Please use terms correctly (at least for next 2 weeks)

Where we are going: multiple inheritance, multiple dispatch, bounded

polymorphism, classless OO languages.

Dan Grossman CSE505 Fall 2007, Lecture 16 28


