CSE 505, Fall 2006, Assignment 5
Due: Friday 8 December 2006, 4:30PM

Last updated: November 28

You also need oo.ml and cml.mli, available on the course website.

1. (Concurrent ML) You will implement the two interfaces in cml.mli using Concurrent ML. Do not use
mutable references, mutexes, condition variables, fork-join, etc. All you need is thread-creation and the
Concurrent ML primitives provided in the Event module. Remember to compile cml.ml via ocamlc
-vmthread -o hwbcml threads.cma cml.ml or similar. Also note Caml terminates when the main
thread terminates, so it is sometimes convenient when testing to put in an infinite loop (preferably
with a call to Thread.yield) in the main thread.

(a) Define the type barrier and the functions new barrier and wait. If a barrier is created by

new_barrier i and a thread makes one of the first i calls to wait, then the thread should block
until the %" call, at which point all i blocked threads should proceed. If a thread calls wait after
there have been i calls, it should block forever.
How to do it: new_barrier should return a channel that a newly created thread receives on. wait
should send on this channel another channel and then receive on the channel it sends. (It does
not matter what is sent on this channel; () is a fine choice.) The newly created thread should
use the arguments of a tail-recursive function to remember how many waiters there are and what
channels to send on after the last arrives. The thread can then terminate. Note you do not need
choose or wrap.

(b) Define the type funny_counter, which is like a type we considered in lecture 13 except it is

imperative instead of functional. The function new_counter creates a new counter whose “sum”
and “length” are both 0. add increases the sum of its second argument by its first argument and
the length of its second argument by 1. sum returns its arguments current sum. sum_of_longer
returns the sum of whichever argument has a greater length (either is fine if the lengths are the
same). Note clients of this interface cannot directly retrieve a counter’s length.!
How to do it: For each counter, create a thread with an infinite loop that uses two channels,
one for receiving a value to add and one for sending the current sum and length. “Store” the
sum and length via arguments to a tail-recursive function. Have add, sum, and sum_of _longer
communicate with the thread via the channels. These functions can get a counter’s current length;
it is clients of the interface in cml.ml that cannot. Note you do need choose, and using wrap
avoids clumsy workarounds so use it.

(¢) In a short English paragraph, explain how using separate channels for the sum and length in part
(b) could lead to a race condition.

2. (Implementing Class-Based OOP) You will complete the code in oo.ml, which demonstrates one way
to implement simple object-oriented programming. There are two similar languages involved.

Our “source” language is an ML expression of type ((classname option) classdef list) * exp
i.e., a pair of (1) a list of class definitions where the super field contains a classname option and (2)
a “main” expression. The super field is the immediate superclass if there is one. You may assume all
the following: class names are distinct, the superclass relation has no cycles, the methods in one class
definition have distinct names, the fields in one class definition have names distinct from each other
and from all fields in all superclasses. A subclass extends its superclass (if any) by adding all its fields
and any methods with names different from those in any superclass. To override a method, a class
definition just includes a method of the same name (see the extra credit). The semantics of methods
and expressions should be straightforward; ask if something is unclear.

The language for our interpreter is an ML expression of type ((classname list) classdef list) * exp.
Unlike the source language:

1Unfortunately, your instructor did come up with a way to figure out the length with this interface, but it is slow, clumsy,
and not the point of the problem.



e The super field holds a list of all superclasses (transitively). There may be none.
e The methods field holds all the methods for a class, including those defined in superclasses.

e The fields field holds all the fields for a class, including those defined in superclasses.

(a) The code given to you defines a boolclass (in the source language). Define two subclasses
trueclass and falseclass. Each should override the ifThenElse method, using the encoding
of true returning the first of two objects and false the second.

(b) Implement translate_classdefs of type
(classname option) classdef list -> (classname list) classdef list for translating a
list of class definitions from the source language to the interpreter language. The sample solution
uses several helper functions and several functions in Caml’s list library, and is 30-35 lines.

(c) Complete the interpreter interp of type
classname list classdef list -> (varname * valu) list -> valu -> exp -> valu. Three
cases are done for you. The other cases are described informally below; there should be no sur-
prises. In general, you may throw whatever sort of exception you like for bad programs, even
List.Not_found. The arguments to interp are the (translated) class definitions (needed for
method calls), an environment (needed for local variables), the value currently bound to self, and
the expression being evaluated. Note New creates a valu where the fields start uninitialized.

o Getting a field fails if the result of evaluating the subexpression does not have that field or
that field is still uninitialized. Otherwise, it returns the valu held in the field.

e Setting a field fails if the result of evaluating the first subexpression does not have that field.
Otherwise, it does the appropriate mutation.

e A let-expression is interpreted very much like in ML.

e A cast fails if the class of the result of evaluating the subexpression is neither the class specified
nor a (transitive) superclass of it. Otherwise, the result is the result of the subexpression.

e A local variable is looked up in the environment.

e A method call evaluates all the subexpressions and then looks up the method in the class of
the receiver. The lookup just uses the name of the method, returning the first method in the
list with that name. The result is the evaluation of the method body using the receiver for
self and an environment containing bindings just for the method arguments. It is an error to
have the wrong number of arguments.

(d) In a short English paragraph, explain why having casts in our language is of little use. In
particular, give two standard uses of casts in languages like Java and C++, one of which affects
type-checking and one of which affects method-call semantics. Explain how neither is relevant
with our implementation.

(e) (Extra Credit)

o (Fairly easy) Change the interpreter to support “arity overloading” — a method call should
not fail due to having the wrong number of arguments if a superclass of the receiver defined
a method with the same name and the correct number of arguments.

o (Fairly easy) Change your interpreter to detect type mismatches on field-assignment or
method-call and fail immediately.

e (Much more challenging) Changing your translation but not your interpreter, implement
static overloading. Document ambiguities and how you deal with them. (Small hints: Fail
causes ambiguities. You will have to implement a type-checker even though the language will
not be type-safe.)

What to turn in: Hard-copy (written or typed) answers to problems lc and 2d, and Caml source code in
files 0o.ml and vote.ml.

Email your source code to Anna as firstname-lastname-hw5.tgz or firstname-lastname-hw5.zip. The
code should untar/unzip into a directory called firstname-lastname-hw5. Hard copy solutions should be
put in Anna’s grad student mailbox or given to her directly.



