
Name:

CSE 505, Fall 2005, Midterm Examination
8 November 2005

Please do not turn the page until everyone is ready.

Rules:

• The exam is closed-book, closed-note, except for one side of one 8.5x11in piece of paper.

• Please stop promptly at 1:20.

• You can rip apart the pages, but please write your name on each page.

• There are 140 points total, distributed unevenly among 6 questions (which have multiple parts).

Advice:

• Read questions carefully. Understand a question before you start writing.

• Write down thoughts and intermediate steps so you can get partial credit.

• The questions are not necessarily in order of difficulty. Skip around. In particular, do not spend so
much time on a proof that you do not get to all the problems.

• If you have questions, ask.

• Relax. You are here to learn.

1

Name:

For your reference:

s ::= skip | x := e | s; s | if e s s | while e s
e ::= c | x | e + e | e ∗ e

(c ∈ {. . . ,−2,−1, 0, 1, 2, . . .})
(x ∈ {x1, x2, . . . , y1, y2, . . . , z1, z2, . . . , . . .})

H ; e ⇓ c

const

H ; c ⇓ c

var

H ; x ⇓ H(x)

add
H ; e1 ⇓ c1 H ; e2 ⇓ c2

H ; e1 + e2 ⇓ c1 + c2

mult
H ; e1 ⇓ c1 H ; e2 ⇓ c2

H ; e1 ∗ e2 ⇓ c1 ∗ c2

H1 ; s1 → H2 ; s2

assign
H ; e ⇓ c

H ; x := e → H,x 7→ c ; skip

seq1

H ; skip; s → H ; s

seq2

H ; s1 → H ′ ; s′
1

H ; s1; s2 → H ′ ; s′
1; s2

if1
H ; e ⇓ c c > 0

H ; if e s1 s2 → H ; s1

if2
H ; e ⇓ c c ≤ 0

H ; if e s1 s2 → H ; s2

e ::= λx. e | x | e e | c
v ::= λx. e | c
τ ::= int | τ → τ

e → e′

(λx. e) v → e[v/x]
e1 → e′

1

e1 e2 → e′
1 e2

e2 → e′
2

v e2 → v e′
2

e[e′/x] = e′′

x[e/x] = e

e1[e/x] = e′
1 y 6= x y 6∈ FV (e)

(λy. e1)[e/x] = λy. e′
1

y 6= x

y[e/x] = y

e1[e/x] = e′
1 e2[e/x] = e′

2

(e1 e2)[e/x] = e′
1 e′

2

Γ ` e : τ

Γ ` c : int Γ ` x : Γ(x)
Γ, x : τ1 ` e : τ2

Γ ` λx. e : τ1 → τ2

Γ ` e1 : τ2 → τ1 Γ ` e2 : τ2

Γ ` e1 e2 : τ1

2

Name:

1. (IMP with choice)

(a) (10 points) Let “?” be a choice operator for IMP expressions: e1?e2 chooses either e1 or e2 and
evaluates its choice to produce an answer. Give semantic rules for this extension.

(b) (20 points) Theorem: If e1 is equivalent to e2, then e1 is equivalent to e1?e2.

• Restate this theorem formally.
• Prove this theorem formally.

Solution:

(a)

left
H ; e1 ⇓ c

H ; e1?e2 ⇓ c

right
H ; e2 ⇓ c

H ; e1?e2 ⇓ c

(b) For all H, e1, e2, and c, suppose H ; e1 ⇓ c if and only if H ; e2 ⇓ c. Then H ; e1 ⇓ c if and
only if H ; e1?e2 ⇓ c.
We prove the two directions of the if-and-only-if separately. First assume H ; e1 ⇓ c. Then
we can use left to derive H ; e1?e2 ⇓ c. Now assume H ; e1?e2 ⇓ c. Then inverting the
derivation ensures the derivation ends with either left or right. If left, then H ; e1 ⇓ c
directly. If right, then H ; e2 ⇓ c, but by assumption that means H ; e1 ⇓ c.

3

Name:

2. (Bad statement rules)

(a) (10 points) Why do we not have this rule in our IMP statement semantics?

H ; s1 → H ′ ; s′
1

H ; s1; (s2; s3) → H ′ ; s′
1; (s2; s3)

(b) (10 points) Why do we not have this rule in our IMP statement semantics?

H ; s1 → H ′ ; s′
1

H ; s2; s1 → H ′ ; s2; s′
1

Solution:

(a) It is unnecessary because we can use seq2 to conclude H ; s1; (s2; s3) → H ′ ; s′
1; (s2; s3) given

H ; s1 → H ′ ; s′
1 – we just instantiate the s2 in the rule with s2; s3.

(b) It is not what we “want” – the purpose of a sequence of statements is to execute the statements
in order. This rule would make our language non-deterministic in a way we don’t want because
it lets us execute the two parts of a sequence in either order (or in fact we can interleave their
execution in any way).

4

Name:

3. (Functional programming)

(a) (10 points) Consider this Caml code:

type t = A of int | B of (int->int)
let x = 2
let f y = x + y
let ans1 = (let x = 3 in

let a = A (f 4) in
let x = 5 in
match a with A x -> x | B x -> x 6)

let ans2 = (let x = 3 in
let b = B f in
let x = 5 in
match b with A x -> x | B x -> x 6)

After evaluating this code, what values are ans1 and ans2 bound to?

(b) (10 points) Consider this Caml code:

let rec g x =
match x with
[] -> []

| hd::tl -> (fun y -> hd + y)::(g tl)

i. What does this function do?
ii. What is this function’s type?
iii. Write a function h that is the inverse of g. That is, fun x -> h (g x) would return a value

equivalent to its input.

Solution:

(a) ans1 is bound to 6 and ans2 is bound to 8.

(b) This function takes a list of integers and returns a list of functions where the ith element in the
output list returns the sum of its input and the ith element of the input list.

(c) int list -> ((int -> int) list)

(d) let rec h x = match x with [] -> [] | hd::tl -> (hd 0)::(h tl)

5

Name:

4. (λ encodings) Recall this encoding of booleans in the λ-calculus:

“true” λx. λy. x

“false” λx. λy. y

“if” λb. λt. λf. b t f

(a) (10 points) Extend this encoding with a λ term that encodes (inclusive) or.

(b) (10 points) Extend this encoding with a λ term that encodes not.

Solution:

(a) “or” λb1. λb2. b1 (λx. λy. x) b2

(b) “not” λb. b (λx. λy. y) (λx. λy. x)

6

Name:

5. (Simply-Typed λ calculus)
For all subproblems, assume the simply-typed λ calculus.

(a) (6 points) Give a Γ, e1, e2, and τ such that Γ ` e1 : τ and Γ ` e2 : τ and e1 6= e2.

(b) (6 points) Give a Γ1, Γ2, e, and τ such that Γ1 ` e : τ and Γ2 ` e : τ and Γ1 6= Γ2.

(c) (8 points) Give a Γ, e, τ1, and τ2 such that Γ ` e : τ1 and Γ ` e : τ2 and τ1 6= τ2.

Solution:

(a) Γ = x:int, y:int, e1 = x, e2 = y, τ = int.

(b) Γ1 = x:int, Γ2 = x:int, y:int, e = x, τ = int.

(c) Γ = ·, e = λx. x, τ1 = int → int, τ2 = (int → int) → (int → int)

7

Name:

6. (Type-Safety)
We add an explicit infinite-loop to the simply-typed λ-calculus: The term ∞ simply “reduces to itself”.

(a) (5 points) Extend the semantics of the call-by-value λ-calculus to include ∞.

(b) (10 points) Extend the type system of the simply-typed λ-calculus to include∞. Be as permissive
as possible considering the next problem.

(c) (15 points) Prove that your extensions maintain type safety. Do not repeate the entire type-
safety proof. Rather, for each of these lemmas, remind us the structure of the proof (i.e., the
induction hypothesis) and then prove any new cases introduced by your extensions.

• Preservation: If · ` e : τ and e → e′, then · ` e′ : τ .
• Progress: If · ` e : τ , then e is a value or there exists an e′ such that e → e′.
• Substitution: If Γ, x:τ ′ ` e1 : τ and Γ ` e2 : τ ′, then Γ ` e1[e2/x] : τ .

Solution:

(a)

inf

∞→∞

∞[e/x] = ∞

(b)

Γ ` ∞ : τ

(c) • Preservation: By induction on the (height of the) derivation that e → e′. The new case is
that the derivation ends with inf. But then e′ is ∞ so we can use our new typing rule to
conclude · ` e′ : τ .

• Progress: By induction on the structure (height) of expressions. The new case is that e is ∞,
in which case we can use inf to take a step.

• Substitution: By induction on the typing derivation of e1. The new case is e1 = ∞, in which
case e1[e2/x] = ∞, so we can use our new typing rule to derive Γ ` e1[e2/x] : τ .

8

