Name: \qquad

CSE 505, Fall 2003, Midquarter Examination 4 November 2003

Please do not turn the page until everyone is ready.

Rules:

- The exam is open-book, open-note, closed electronics.
- Please stop promptly at 11:50.
- You can rip apart the pages, but please write your name on each page.
- You can turn in other pieces of paper.
- There are six questions (all with subparts), worth equal amounts. The subparts are not necessarily worth equal amounts.

Advice:

- Read questions carefully. Understand a question before you start writing.
- Write down thoughts and intermediate steps so you can get partial credit.
- The questions are roughly in the order we covered the material, not necessarily order of difficulty. Skip around.
- If you have questions, ask.
- Relax. You are here to learn, not beat the mean.

Name: \qquad

1. Consider this syntax for IMP expressions, which has (integer) division as the only arithmetic operator:

$$
e::=c|x| e / e
$$

(a) Give a large-step operational semantics of the form $H ; e \Downarrow c$ for these expressions. Make sure that if evaluation of e under H would involve dividing by 0 , then there is no c for which you can derive $H ; e \Downarrow c$.
(Hint: You need 3 inference rules.)
(Note: You may assume $H(x)$ is defined as in class.)
(b) Now suppose we add an explicit error result. Add inference rules to your previous answer so that $H ; e \Downarrow v$ where $v::=c \mid$ error. Make sure that if evaluation of e under H would involve dividing by 0 , then $H ; e \Downarrow$ error.
(Hint: You need 3 more inference rules, so 6 total.)
(c) Does adding the rule $\overline{H ; 0 / e \Downarrow 0}$ change the semantics you defined for (a) and (b)? Explain.

Name: \qquad
2. Here is our unchanged syntax and semantics for IMP statements:

$$
s::=\operatorname{skip}|x:=e| s ; s \mid \text { if } e s s \mid \text { while } e s
$$

ASSIGN
$\frac{H ; e \Downarrow c}{H ; x:=e \rightarrow H, x \mapsto c ; \text { skip }}$

SEQ1
$\overline{H ; \text { skip } s \rightarrow H ; s}$

SEQ2
$\frac{H ; s_{1} \rightarrow H^{\prime} ; s_{1}^{\prime}}{H ; s_{1} ; s_{2} \rightarrow H^{\prime} ; s_{1}^{\prime} ; s_{2}}$

IF1
$\frac{H ; e \Downarrow c \quad c>0}{H ; \text { if } e s_{1} s_{2} \rightarrow H ; s_{1}}$

IF2
$\frac{H ; e \Downarrow c \quad c \leq 0}{H ; \text { if } e s_{1} s_{2} \rightarrow H ; s_{2}}$

WHILE
$\overline{H \text {; while } e s \rightarrow H \text {; if } e(s \text {; while } e s) \text { skip }}$
(a) Define a judgment of the form mysize(s$)=\mathrm{n}$. Informally, n should be: (the number of skip statements in s) plus (two times the number of assignment statements in s). For example, you should be able to derive mysize(skip; $\mathrm{x}:=0 ; \mathrm{y}:=1)=5$. (Hint: You need 5 inference rules.)
(b) Prove the following: If s has no while-statements or if-statements and $H ; s \rightarrow H^{\prime} ; s^{\prime}$ and $\operatorname{mysize}(\mathrm{s})=\mathrm{n}$ and mysize $\left(\mathrm{s}^{\prime}\right)=\mathrm{n}^{\prime}$, then $n^{\prime}<n$.
Note: This theorem is true with if-statements (but not while-statements), but you do not have to show this.
(c) Using part (b), argue informally (no proof required) that while-free programs terminate.

Name: \qquad
3. Describe what each of the following O'Caml programs would print:
(a) let $f x y=x y$ in let $z=f$ print_string "hi" in f print_string "hi"
(b) let $f x=$ (fun $y \rightarrow p r i n t _$string x) in let $g=f$ "hi" in let $\mathrm{x}=$ "mom" in g "pizza"
(c) let rec $\mathrm{f} \mathrm{nx}=$ if $n>0$ then (let _ = print_string x in $f(n-1) x$) else ()
in f 3 "hi"
(d) let rec $f \mathrm{nx}=$ if $n>0$ then (let _ = print_string x in $f(n-1) x$) else ()
in
f 3
(e) let $\mathrm{rec} \mathrm{f} x=\mathrm{f} \mathrm{x}$ in print_string (f "hi")

Name: \qquad
4. Consider a λ-calculus with pairs built-in. That is, $\left(v_{1}, v_{2}\right)$ is a value if v_{1} and v_{2} are values, $\left(v_{1}, v_{2}\right) .1 \rightarrow$ v_{1} and (v_{1}, v_{2}). $2 \rightarrow v_{2}$.
(a) Give an encoding of triples that uses pairs. You should define four terms: a three-argument function (using currying) to build a triple, and functions for returning the first, second, and third part of a triple. (By encoding, we mean you may not extend the syntax of the language.)
(b) In the simply-typed λ-calcus with pairs (and types of the form $\tau_{1} * \tau_{2}$), give two different types that your function for forming a triple could have. (I.e., if e is your term for building a triple, give two τ such that $\cdot \vdash e: \tau$.)

Name:
5. Under what assumptions do the following terms type-check in the simply-typed λ-calculus? That is, for the given e, describe all Γ and τ such that $\Gamma \vdash e: \tau$.
(a) $e=x y$
(b) $e=\lambda x$. $(f(f x))$
(c) $e=\lambda x \cdot(\lambda y \cdot x)$
(d) $e=\lambda x \cdot(x(\lambda y \cdot x))$

Name: \qquad
6. Recall how we extend the simply-typed λ-calculus with fix:

$$
\frac{e \rightarrow e^{\prime}}{\text { fix } e \rightarrow f i x e^{\prime}} \quad \overline{f i x \lambda x . e \rightarrow e[(f i x \lambda x . e) / x]} \quad \frac{\Gamma \vdash e: \tau \rightarrow \tau}{\Gamma \vdash f x e: \tau}
$$

Also we recall that this extension is type-safe.
(a) If we add the rule

$$
\overline{\Gamma \vdash f i x e: \tau}
$$

is our language still type-safe? If not, give a program that gets stuck. If so, argue the case of the Preservation Lemma proof for a typing derivation ending with this rule.
(b) If we add the rule

$$
\overline{\Gamma \vdash f i x \lambda x . x: \tau}
$$

is our language still type-safe? If not, give a program that gets stuck. If so, argue the case of the Preservation Lemma proof for a typing derivation ending with this rule.

Hint: The Preservation Lemma is: If $\cdot \vdash e: \tau$ and $e \rightarrow e^{\prime}$, then $\cdot \vdash e^{\prime}: \tau$. We prove it by induction on the derivation of $\cdot \vdash e: \tau$.

