
Name:

CSE 505, Fall 2003, Midquarter Examination
4 November 2003

Please do not turn the page until everyone is ready.

Rules:

• The exam is open-book, open-note, closed electronics.

• Please stop promptly at 11:50.

• You can rip apart the pages, but please write your name on each page.

• You can turn in other pieces of paper.

• There are six questions (all with subparts), worth equal amounts. The subparts are not necessarily
worth equal amounts.

Advice:

• Read questions carefully. Understand a question before you start writing.

• Write down thoughts and intermediate steps so you can get partial credit.

• The questions are roughly in the order we covered the material, not necessarily order of difficulty. Skip
around.

• If you have questions, ask.

• Relax. You are here to learn, not beat the mean.

1

Name:

1. Consider this syntax for IMP expressions, which has (integer) division as the only arithmetic operator :

e ::= c | x | e/e

(a) Give a large-step operational semantics of the form H ; e ⇓ c for these expressions. Make sure
that if evaluation of e under H would involve dividing by 0, then there is no c for which you can
derive H ; e ⇓ c.
(Hint: You need 3 inference rules.)
(Note: You may assume H(x) is defined as in class.)

(b) Now suppose we add an explicit error result. Add inference rules to your previous answer so that
H ; e ⇓ v where v ::= c | error. Make sure that if evaluation of e under H would involve dividing
by 0, then H ; e ⇓ error.
(Hint: You need 3 more inference rules, so 6 total.)

(c) Does adding the rule
H ; 0/e ⇓ 0

change the semantics you defined for (a) and (b)? Explain.

Solution:

(a)

H ; c ⇓ c H ; x ⇓ H(x)
H ; e1 ⇓ c1 H ; e2 ⇓ c2 c2 6= 0

H ; e1/e2 ⇓ c1/c2

(The conclusions of the last rule uses the “math” /. I didn’t count off for omitting c2 6= 0 because
you could claim the math / simply does not apply if c2 is 0.)

(b) We add:

H ; e1 ⇓ error
H ; e1/e2 ⇓ error

H ; e2 ⇓ error
H ; e1/e2 ⇓ error

H ; e2 ⇓ 0
H ; e1/e2 ⇓ error

(c) Yes, this rule would let us derive results like H ; 0/0 ⇓ 0, which the solutions to parts (a) and (b)
do not allow.

2

Name:

2. Here is our unchanged syntax and semantics for IMP statements:

s ::= skip | x := e | s; s | if e s s | while e s

assign
H ; e ⇓ c

H ; x := e → H,x 7→ c ; skip

seq1

H ; skip; s → H ; s

seq2

H ; s1 → H ′ ; s′
1

H ; s1; s2 → H ′ ; s′
1; s2

if1
H ; e ⇓ c c>0

H ; if e s1 s2 → H ; s1

if2
H ; e ⇓ c c≤0

H ; if e s1 s2 → H ; s2

while

H ; while e s → H ; if e (s;while e s) skip

(a) Define a judgment of the form mysize(s) = n. Informally, n should be: (the number of skip
statements in s) plus (two times the number of assignment statements in s). For example, you
should be able to derive mysize(skip; x := 0; y := 1) = 5.
(Hint: You need 5 inference rules.)

(b) Prove the following: If s has no while-statements or if-statements and H ; s → H ′ ; s′ and
mysize(s) = n and mysize(s′) = n′, then n′ < n.
Note: This theorem is true with if-statements (but not while-statements), but you do not have to
show this.

(c) Using part (b), argue informally (no proof required) that while-free programs terminate.

Solution:

(a)

mysize(skip) = 1 mysize(x := e) = 2
mysize(s1) = n1 mysize(s2) = n2

mysize(s1; s2) = n1 + n2

mysize(s1) = n1 mysize(s2) = n2

mysize(if e s1 s2) = n1 + n2

mysize(s) = n
mysize(while e s) = n

(b) The proof is by induction on the derivation of H ; s → H ′ ; s′, proceeding by cases on the
bottom-most rule:

• If s is some x := e then n is 2 and n′ is 1.
• If s is some s1; s2 and s1 is not skip, then we have a shorter derivation of H ; s1 → H ′ ; s′

1.
Furthermore, mysize(s1; s2) = n1 + n2 where mysize(s1) = n1 and mysize(s2) = n2. So by
induction mysize(s′

1) = n′
1 where n′

1 < n1. So we can derive mysize(s′
1; s2) = n′

1 + n2 and
n′

1 + n2 < n1 + n2.
Note: We’re implicitly using a lemma that mysize(s) = n implies n > 0, but I didn’t take off
if you failed to say that explicitly.

• If s has the form skip; s2, then s′ is s2 and inverting mysize(s) = n ensures mysize(s2) = n− 1.
Clearly n− 1 < n.

• If s if an if-statement or while-loop, the lemma holds vacuously.

(c) If s is while-free and mysize(s) = n, then the previous part proved the size of s decreases on every
step. So in at most n steps its size must be 1, which means it has become skip.

3

Name:

3. Describe what each of the following O’Caml programs would print:

(a) let f x y = x y in
let z = f print_string "hi" in
f print_string "hi"

(b) let f x = (fun y -> print_string x) in
let g = f "hi" in
let x = "mom" in
g "pizza"

(c) let rec f n x =
if n>0
then (let _ = print_string x in f (n-1) x)
else ()

in
f 3 "hi"

(d) let rec f n x =
if n>0
then (let _ = print_string x in f (n-1) x)
else ()

in
f 3

(e) let rec f x = f x in
print_string (f "hi")

Solution:

(a) “hi” “hi”

(b) “hi”

(c) “hi” “hi” “hi”

(d) prints nothing (evaluates to a function that prints when called)

(e) prints nothing (goes into an infinite loop)

4

Name:

4. Consider a λ-calculus with pairs built-in. That is, (v1, v2) is a value if v1 and v2 are values, (v1, v2).1 →
v1 and (v1, v2).2 → v2.

(a) Give an encoding of triples that uses pairs. You should define four terms: a three-argument
function (using currying) to build a triple, and functions for returning the first, second, and third
part of a triple. (By encoding, we mean you may not extend the syntax of the language.)

(b) In the simply-typed λ-calcus with pairs (and types of the form τ1 ∗ τ2), give two different types
that your function for forming a triple could have. (I.e., if e is your term for building a triple,
give two τ such that · ` e : τ .)

Solution:

(a) “make-triple” = λx. λy. λz. ((x, y), z)
“first” = λx. x.1.1
“second” = λx. x.1.2
“third” = λx. x.2

(b) int->int->int->((int*int)*int)
int->int->(int*int)->((int*int)*(int*int))
. . .

5

Name:

5. Under what assumptions do the following terms type-check in the simply-typed λ-calculus? That is,
for the given e, describe all Γ and τ such that Γ ` e : τ .

(a) e = x y

(b) e = λx. (f (f x))

(c) e = λx. (λy. x)

(d) e = λx. (x (λy. x))

Solution:

(a) Any Γ and τ where Γ maps x to a type of the form τ1 → τ and y to a type of the form τ1.

(b) Any Γ and τ where Γ maps f to a type of the form τ1 → τ1 and τ = τ1 → τ1.

(c) Any Γ and τ where τ has the form τ1 → τ2 → τ1.

(d) There is no Γ and τ for which this program type-checks.

6

Name:

6. Recall how we extend the simply-typed λ-calculus with fix :

e → e′

fix e → fix e′ fix λx. e → e[(fix λx. e)/x]
Γ ` e : τ → τ

Γ ` fix e : τ

Also we recall that this extension is type-safe.

(a) If we add the rule

Γ ` fix e : τ

is our language still type-safe? If not, give a program that gets stuck. If so, argue the case of the
Preservation Lemma proof for a typing derivation ending with this rule.

(b) If we add the rule

Γ ` fix λx. x : τ

is our language still type-safe? If not, give a program that gets stuck. If so, argue the case of the
Preservation Lemma proof for a typing derivation ending with this rule.

Hint: The Preservation Lemma is: If · ` e : τ and e → e′, then · ` e′ : τ . We prove it by induction on
the derivation of · ` e : τ .

Solution:

(a) The extension is not safe because it accepts any term of the form fix e. So fix (3 4) would get
stuck.

(b) The language is safe. For Preservation, if the typing derivation ends with
· ` fix λx. x : τ

, we

need to show · ` e′ : τ if fix λx. x → e′. But fix λx. x → fix λx. x so the assumed typing
derivation is exactly what we need.

7

