Name: \qquad

CSE 505, Fall 2003, Midquarter Examination 4 November 2003

Please do not turn the page until everyone is ready.

Rules:

- The exam is open-book, open-note, closed electronics.
- Please stop promptly at 11:50.
- You can rip apart the pages, but please write your name on each page.
- You can turn in other pieces of paper.
- There are six questions (all with subparts), worth equal amounts. The subparts are not necessarily worth equal amounts.

Advice:

- Read questions carefully. Understand a question before you start writing.
- Write down thoughts and intermediate steps so you can get partial credit.
- The questions are roughly in the order we covered the material, not necessarily order of difficulty. Skip around.
- If you have questions, ask.
- Relax. You are here to learn, not beat the mean.

Name: \qquad

1. Consider this syntax for IMP expressions, which has (integer) division as the only arithmetic operator:

$$
e::=c|x| e / e
$$

(a) Give a large-step operational semantics of the form $H ; e \Downarrow c$ for these expressions. Make sure that if evaluation of e under H would involve dividing by 0 , then there is no c for which you can derive $H ; e \Downarrow c$.
(Hint: You need 3 inference rules.)
(Note: You may assume $H(x)$ is defined as in class.)
(b) Now suppose we add an explicit error result. Add inference rules to your previous answer so that $H ; e \Downarrow v$ where $v::=c \mid$ error. Make sure that if evaluation of e under H would involve dividing by 0 , then $H ; e \Downarrow$ error.
(Hint: You need 3 more inference rules, so 6 total.)
(c) Does adding the rule $\overline{H ; 0 / e \Downarrow 0}$ change the semantics you defined for (a) and (b)? Explain.

Solution:

(a)

$$
\overline{H ; c \Downarrow c} \quad \overline{H ; x \Downarrow H(x)} \quad \frac{H ; e_{1} \Downarrow c_{1} \quad H ; e_{2} \Downarrow c_{2} \quad c_{2} \neq 0}{H ; e_{1} / e_{2} \Downarrow c_{1} / c_{2}}
$$

(The conclusions of the last rule uses the "math" $/$. I didn't count off for omitting $c_{2} \neq 0$ because you could claim the math / simply does not apply if c_{2} is 0 .)
(b) We add:

$$
\frac{H ; e_{1} \Downarrow \text { error }}{H ; e_{1} / e_{2} \Downarrow \text { error }} \quad \frac{H ; e_{2} \Downarrow \text { error }}{H ; e_{1} / e_{2} \Downarrow \text { error }} \quad \frac{H ; e_{2} \Downarrow 0}{H ; e_{1} / e_{2} \Downarrow \text { error }}
$$

(c) Yes, this rule would let us derive results like $H ; 0 / 0 \Downarrow 0$, which the solutions to parts (a) and (b) do not allow.

Name: \qquad
2. Here is our unchanged syntax and semantics for IMP statements:

$$
s::=\operatorname{skip}|x:=e| s ; s \mid \text { if } e s s \mid \text { while } e s
$$

ASSIGN		
$H ; x:=e \rightarrow H, x \mapsto c ;$ skip		SEQ2
	$\frac{H ; s_{1} \rightarrow H^{\prime} ; s_{1}^{\prime}}{H ; \text { skip } ; s \rightarrow H ; s}$	$\frac{H ; s_{1} ; s_{2} \rightarrow H^{\prime} ; s_{1}^{\prime} ; s_{2}}{H}$

$$
\begin{array}{ll}
\text { IF 1 } \\
\frac{H ; e \Downarrow c}{H ; \text { if } e s_{1} s_{2} \rightarrow H ; s_{1}} & \quad \begin{array}{l}
\text { IF2 } \\
H ; \text { if } e s_{1} s_{2} \rightarrow H ; s_{2}
\end{array} \quad \begin{array}{l}
H ; e \\
H ; \text { while } e s \rightarrow H ; \text { if } e(s ; \text { while } e s) \text { skip }
\end{array}
\end{array}
$$

(a) Define a judgment of the form mysize(s$)=\mathrm{n}$. Informally, n should be: (the number of skip statements in s) plus (two times the number of assignment statements in s). For example, you should be able to derive mysize(skip; $\mathrm{x}:=0 ; \mathrm{y}:=1)=5$.
(Hint: You need 5 inference rules.)
(b) Prove the following: If s has no while-statements or if-statements and $H ; s \rightarrow H^{\prime} ; s^{\prime}$ and $\operatorname{mysize}(\mathrm{s})=\mathrm{n}$ and $\operatorname{mysize}\left(\mathrm{s}^{\prime}\right)=\mathrm{n}^{\prime}$, then $n^{\prime}<n$.
Note: This theorem is true with if-statements (but not while-statements), but you do not have to show this.
(c) Using part (b), argue informally (no proof required) that while-free programs terminate.

Solution:

(a)

$$
\begin{array}{cc}
\overline{\operatorname{mysize}(\text { skip })=1} \quad \begin{array}{c}
\operatorname{mysize}(\mathrm{x}:=\mathrm{e})=2
\end{array} & \frac{\operatorname{mysize}\left(\mathrm{~s}_{1}\right)=\mathrm{n}_{1} \quad \operatorname{mysize}\left(\mathrm{~s}_{2}\right)=\mathrm{n}_{2}}{\operatorname{mysize}\left(\mathrm{~s}_{1} ; \mathrm{s}_{2}\right)=\mathrm{n}_{1}+\mathrm{n}_{2}} \\
\frac{\operatorname{mysize}\left(\mathrm{~s}_{1}\right)=\mathrm{n}_{1} \quad \operatorname{mysize}\left(\mathrm{~s}_{2}\right)=\mathrm{n}_{2}}{\operatorname{mysize}\left(\text { if e } \mathrm{s}_{1} \mathrm{~s}_{2}\right)=\mathrm{n}_{1}+\mathrm{n}_{2}} & \frac{\operatorname{mysize}(\mathrm{~s})=\mathrm{n}}{\operatorname{mysize}(\text { while e } \mathrm{s})=\mathrm{n}}
\end{array}
$$

(b) The proof is by induction on the derivation of $H ; s \rightarrow H^{\prime} ; s^{\prime}$, proceeding by cases on the bottom-most rule:

- If s is some $x:=e$ then n is 2 and n^{\prime} is 1 .
- If s is some $s_{1} ; s_{2}$ and s_{1} is not skip, then we have a shorter derivation of $H ; s_{1} \rightarrow H^{\prime} ; s_{1}^{\prime}$. Furthermore, $\operatorname{mysize}\left(\mathrm{s}_{1} ; \mathrm{s}_{2}\right)=\mathrm{n}_{1}+\mathrm{n}_{2}$ where $\operatorname{mysize}\left(\mathrm{s}_{1}\right)=\mathrm{n}_{1}$ and $\operatorname{mysize}\left(\mathrm{s}_{2}\right)=\mathrm{n}_{2}$. So by induction mysize $\left(\mathrm{s}_{1}^{\prime}\right)=\mathrm{n}_{1}^{\prime}$ where $n_{1}^{\prime}<n_{1}$. So we can derive mysize $\left(\mathrm{s}_{1}^{\prime} ; \mathrm{s}_{2}\right)=\mathrm{n}_{1}^{\prime}+\mathrm{n}_{2}$ and $n_{1}^{\prime}+n_{2}<n_{1}+n_{2}$.
Note: We're implicitly using a lemma that mysize $(\mathrm{s})=\mathrm{n}$ implies $n>0$, but I didn't take off if you failed to say that explicitly.
- If s has the form skip; s_{2}, then s^{\prime} is s_{2} and inverting mysize $(\mathrm{s})=\mathrm{n}$ ensures mysize $\left(\mathrm{s}_{2}\right)=\mathrm{n}-1$. Clearly $n-1<n$.
- If s if an if-statement or while-loop, the lemma holds vacuously.
(c) If s is while-free and mysize(s$)=\mathrm{n}$, then the previous part proved the size of s decreases on every step. So in at most n steps its size must be 1, which means it has become skip.

Name: \qquad
3. Describe what each of the following O'Caml programs would print:

```
(a) let f x y = x y in
    let z = f print_string "hi" in
    f print_string "hi"
(b) let f x = (fun y -> print_string x) in
    let g = f "hi" in
    let x = "mom" in
    g "pizza"
(c) let rec f n x =
        if n>0
        then (let _ = print_string x in f (n-1) x)
        else ()
    in
    f 3 "hi"
(d) let rec f n x =
        if n>0
        then (let _ = print_string x in f (n-1) x)
        else ()
    in
    f }
(e) let rec f x = f x in
    print_string (f "hi")
```


Solution:

(a) "hi" "hi"
(b) "hi"
(c) "hi" "hi" "hi"
(d) prints nothing (evaluates to a function that prints when called)
(e) prints nothing (goes into an infinite loop)

Name: \qquad
4. Consider a λ-calculus with pairs built-in. That is, $\left(v_{1}, v_{2}\right)$ is a value if v_{1} and v_{2} are values, $\left(v_{1}, v_{2}\right) .1 \rightarrow$ v_{1} and $\left(v_{1}, v_{2}\right) .2 \rightarrow v_{2}$.
(a) Give an encoding of triples that uses pairs. You should define four terms: a three-argument function (using currying) to build a triple, and functions for returning the first, second, and third part of a triple. (By encoding, we mean you may not extend the syntax of the language.)
(b) In the simply-typed λ-calcus with pairs (and types of the form $\tau_{1} * \tau_{2}$), give two different types that your function for forming a triple could have. (I.e., if e is your term for building a triple, give two τ such that $\cdot \vdash e: \tau$.)

Solution:

(a) "make-triple" $=\lambda x \cdot \lambda y \cdot \lambda z \cdot((x, y), z)$
"first" $=\lambda x$. x.1.1
"second" $=\lambda x . x .1 .2$
"third" $=\lambda x . x .2$
(b) int->int->int->((int*int)*int) int->int->(int*int)->((int*int)*(int*int))

Name: \qquad
5. Under what assumptions do the following terms type-check in the simply-typed λ-calculus? That is, for the given e, describe all Γ and τ such that $\Gamma \vdash e: \tau$.
(a) $e=x y$
(b) $e=\lambda x$. $(f(f x))$
(c) $e=\lambda x \cdot(\lambda y \cdot x)$
(d) $e=\lambda x \cdot(x(\lambda y \cdot x))$

Solution:

(a) Any Γ and τ where Γ maps x to a type of the form $\tau_{1} \rightarrow \tau$ and y to a type of the form τ_{1}.
(b) Any Γ and τ where Γ maps f to a type of the form $\tau_{1} \rightarrow \tau_{1}$ and $\tau=\tau_{1} \rightarrow \tau_{1}$.
(c) Any Γ and τ where τ has the form $\tau_{1} \rightarrow \tau_{2} \rightarrow \tau_{1}$.
(d) There is no Γ and τ for which this program type-checks.

Name: \qquad
6. Recall how we extend the simply-typed λ-calculus with $f x$:

$$
\frac{e \rightarrow e^{\prime}}{\text { fix } e \rightarrow \text { fix } e^{\prime}} \quad \overline{f i x \lambda x . e \rightarrow e[(f i x \lambda x . e) / x]} \quad \frac{\Gamma \vdash e: \tau \rightarrow \tau}{\Gamma \vdash f i x e: \tau}
$$

Also we recall that this extension is type-safe.
(a) If we add the rule

$$
\overline{\Gamma \vdash f i x e: \tau}
$$

is our language still type-safe? If not, give a program that gets stuck. If so, argue the case of the Preservation Lemma proof for a typing derivation ending with this rule.
(b) If we add the rule

$$
\overline{\Gamma \vdash f i x \lambda x . x: \tau}
$$

is our language still type-safe? If not, give a program that gets stuck. If so, argue the case of the Preservation Lemma proof for a typing derivation ending with this rule.

Hint: The Preservation Lemma is: If $\cdot \vdash e: \tau$ and $e \rightarrow e^{\prime}$, then $\cdot \vdash e^{\prime}: \tau$. We prove it by induction on the derivation of $\cdot \vdash e: \tau$.

Solution:

(a) The extension is not safe because it accepts any term of the form fix e. So fix (3 4) would get stuck.
(b) The language is safe. For Preservation, if the typing derivation ends with $\overline{\cdot \vdash \text { fix } \lambda x . x: \tau}$, we need to show $\cdot \vdash e^{\prime}: \tau$ if fix $\lambda x . x \rightarrow e^{\prime}$. But fix $\lambda x . x \rightarrow f i x \lambda x . x$ so the assumed typing derivation is exactly what we need.

