Quasiquote

The argument of quot e is a literal constant
"(if (>ab) 34)) - (if (> ab) 34))

More flexible: allow “holes” in the literal,
to be filled in with run-time computed values

quasi quot e, or * (backquote) allows this
« , expr marks a hole, filled in with result of evaluating expr

e , @i stexpr marks a hole, filled in with elements of list
resulting from evaluating | i st expr

(define (make-if test then else)
‘(if ,test ,then ,else))

(make-if "(>ab) 34)) — (if (>ab) 34)

(define (nmake-call fn args)
“(,fn , @rgs))
(make-call '+ ' (3 4 5)) - (+ 3405)

Very useful in many systems that build structured data,
particularly program representations

Craig Chambers 119 CSE 505

Side-effect special forms

set ! : rebind a variable to refer to a different value

(define x 5)
(set! x '(6 7))
X - (67)

(define (test Ist)
(set! Ist (cons 1 Ist))
I st)
(test '(2 3)) - (1 23)

Scheme’s design is more biased towards side-effecting style
than ML'’s

« all Scheme variables can be reassigned using set !
e mutation isn’t compartmentalized

« body of a function, arm of a cond, etc. is
a series of expressions to evaluate

« all but last evaluated just for their side-effects
« Scheme has predefined non-recursive looping constructs

Craig Chambers 120 CSE 505

Side-effects on cons cells

set-car!,set-cdr!:rebind head, tail of cons cell

(define c (list 5 6))
(set-car! c (list 3 4))

c >?EI—>()
() 6

c - ((3 4) 6)

(set-cdr! (cdr c) (list 7 8))

c )

c - ((34) 678

Craig Chambers 121 CSE 505

Example

append! : destructive append

(define (append! Istl Ist2)
(cond ((null? Istl) Ist2)
((nul'1? (cdr Istl))
(set-cdr! Istl Ist2)
I stl)
(el se (append! (cdr Istl) Ist2)
Istl)))

(define Istl ' (3 4))
(define Ist2 '(5 6 7))
(define Ist3 (append! Istl |st2))

Ist3 - (34567

I st2

Istl

Ist3 0
3 4 5 6 7

append! more efficient than append, but
more complicated to use correctly in face of rampant sharing

Craig Chambers 122 CSE 505




First-class functions

Scheme supports first-class, lexically-nested, statically-scoped
function values, just like ML

Translation between ML and Scheme

ML Scheme

fn pat => expr (lanbda (idy ... idy)
exprq ... expry)

map f | st (map f Istl ... Istn)

Scheme R5RS doesn’t have filter, fold, etc. predefined

Craig Chambers 123 CSE 505

Control constructs

Languages support mechanisms for controlling execution flow:

Basic methods:
« procedure call & return, potentially recursively
« conditional execution like i f, cond

Advanced methods:
« looping (!)
« break, continue
« exception handling
« coroutines, threads

Craig Chambers 124 CSE 505

Continuations

Scheme supports all advanced control constructs
with one notion: continuations

A continuation is a function that can be called (with a result
value) to do “the rest of the program,” exiting the current task
« enables parameterizing a function by
“what to do next,” “where to return to”

« enables having multiple return places, not just the one
normal return, for different kinds of outcomes

Example, using normal functions as continuations:
f i nd parameterized by success and failure continuations
(define (find pred Ist if-found if-not-found)
(cond ((null? Ist) (if-not-found))
((pred (car Ist)) (if-found (car Ist)))
(el se (find pred (cdr Ist)
if-found if-not-found)))))

(find is-string? '(...)
(lanmbda(x) ‘(Yes ,x))
(lambda() 'No))

Craig Chambers 125 CSE 505

Current continuation

The normal return point is an implicit continuation:
it takes the returned value and does the rest of the program

Scheme makes this continuation first-class upon request using
call-w th-current-continuation (ak.a.call/cc)

cal | / cc takes an argument function of one argument, P,
and invokes P passing the current continuation, K, as P's
argument

¢ if Preturns V normally, cal | / cc returns V
« if P invokes K, passing one argument value, V,
P quits and cal | / cc returns V

Example: computing products with an early exit
(define (prod Ist)
(call/cc (lambda (exit) ;; exit:reified context
(foldl
(1 ambda (x accum
(if (zero? x)

(exit 0) ;5 break out of loop, return 0
(* x accum) ;; continue multiplying
))
11st))))
Craig Chambers 126 CSE 505




Another example: threads

Task: implement a lightweight non-preemptive thread package

API:

e (fork f):creates a new (initially suspended) thread,
which evaluates (f) when first resumed
and dies when evaluation is done

¢ (suspend) : suspends the current thread, then runs each
other suspended thread till it suspends again, then
resumes the current thread by returning

An example, with 3 threads:
(define (test-threads)

(fork (lanmbda()
(display "hi\n") (suspend)
(display "there\n") (suspend)))

(fork (lambda()
(display "joe\n") (suspend)
(display "louis\n") (suspend)))

(di splay "An") (suspend)

(di splay "B\n") (suspend)

(di splay "C n") (suspend)

(di splay "D\n") (suspend))

Craig Chambers 127 CSE 505

Threads via continuations (part 1 of 2)

Maintain a list of suspended “thread” objects,
represented by functions to call to resume the thread

(define thread-queue ())

(define (eng-thread! f)
(set! thread-queue
(append thread-queue (list f))))

(define (deg-thread!)
(let ((f (car thread-queue)))
(set! thread-queue (cdr thread-queue))

f))

Craig Chambers 128 CSE 505

Threads via continuations (part 2 of 2)

Fork adds a new thread to the queue, which dies when done
(define (fork f)
(eng-t hread!
(I anbda()
(f)
(run-next-thread))))

Suspend uses cal | / cc to create a handle for the current
thread, saves it, then switches to the next thread in the queue
« eventually this thread will be resumed by some other
thread’s suspend call
(define (suspend)
(call/cc (lanbda (this-thread)
(eng-thread! (lanmbda() (this-thread ())))
(run-next-thread))))

Run-next-thread runs the next thread on the queue

(define (run-next-thread)
(let ((next-thread (deg-thread!)))
(next-thread)))

Craig Chambers 129 CSE 505

Summary of continuations

Normal functions can be used as continuations

cal | / cc reifies the implicit internal continuation as a function
that can be manipulated like any other function

First-class continuations can do things that
otherwise require special language constructs

« exception throwing

 stack-unwind protection (like Java’s try-finally)
« coroutines and (non-preemptive) threads

« backtracking a la Prolog

Very powerful, which can be very confusing,
and hard to implement efficiently

Example: what should happen if a cal | / cc continuation
function is invoked more than once?

« e.g. suspend didn't dequeue the thread, but left it on the
queue to be resumed again

Craig Chambers 130 CSE 505




