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Quasiquote

The argument of quot e is a literal constant

' ( i f  ( > a b)  3 4) ) → ( i f  ( > a b)  3 4) )

More flexible: allow “holes” in the literal,
to be filled in with run-time computed values

quasi quot e, or ‘  (backquote) allows this

• , expr marks a hole, filled in with result of evaluating expr

• , @listexpr marks a hole, filled in with elements of list 
resulting from evaluating listexpr

( def i ne ( make- i f  t est  t hen el se)
‘ ( i f  , t es t  , t hen , el se) )

( make- i f  ' ( > a b)  3 4) ) → ( i f  ( > a b)  3 4)

( def i ne ( make- cal l  f n ar gs)
‘ ( , f n , @ar gs) )

( make- cal l  ' + ' ( 3 4 5) ) → ( + 3 4 5)

Very useful in many systems that build structured data, 
particularly program representations
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Side-effect special forms

set ! : rebind a variable to refer to a different value

( def i ne x 5)
( set !  x  ' ( 6 7) )
x → ( 6 7)

( def i ne ( t est  l s t )
( set !  l st  ( cons 1 l st ) )
l st )

( t es t  ' ( 2 3) ) → ( 1 2 3)

Scheme’s design is more biased towards side-effecting style 
than ML’s

• all Scheme variables can be reassigned using set !

• mutation isn’t compartmentalized

• body of a function, arm of a cond, etc. is 
a series of expressions to evaluate

• all but last evaluated just for their side-effects

• Scheme has predefined non-recursive looping constructs
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Side-effects on cons cells

set - car ! , set - cdr ! : rebind head, tail of cons cell

( def i ne c ( l i st  5 6) )
( set - car !  c ( l i s t  3 4) )

c → ( ( 3 4)  6)

( set - cdr !  ( cdr  c)  ( l i st  7 8) )

c → ( ( 3 4)  6 7 8)
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Example

append! : destructive append

( def i ne ( append!  l s t 1 l s t 2)
( cond ( ( nul l ? l st 1)  l st 2)

( ( nul l ? ( cdr  l s t 1) )
( set - cdr !  l s t 1 l st 2)
l st 1)

( el se ( append!  ( cdr  l st 1)  l st 2)
l st 1) ) )

( def i ne l s t 1 ' ( 3 4) )
( def i ne l s t 2 ' ( 5 6 7) )
( def i ne l s t 3 ( append!  l s t 1 l st 2) )

l st 3 → ( 3 4 5 6 7)

append!  more efficient than append, but
more complicated to use correctly in face of rampant sharing

l s t 1

4 5 6 7

( )l st 3

3

l st 2
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First-class functions

Scheme supports first-class, lexically-nested, statically-scoped 
function values, just like ML

Translation between ML and Scheme

Scheme R5RS doesn’t have filter, fold, etc. predefined

ML Scheme

f n pat => expr ( l ambda ( id1 . . .  idk)
expr1 . . .  exprn)

map f lst ( map f lst1 . . .  lstn)
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Control constructs

Languages support mechanisms for controlling execution flow:

Basic methods:

• procedure call & return, potentially recursively

• conditional execution like i f , cond

Advanced methods:

• looping (!)

• break, continue

• exception handling

• coroutines, threads

• ...
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Continuations

Scheme supports all advanced control constructs
with one notion: continuations

A continuation is a function that can be called (with a result 
value) to do “the rest of the program,” exiting the current task

• enables parameterizing a function by
“what to do next,” “where to return to”

• enables having multiple return places, not just the one 
normal return, for different kinds of outcomes

Example, using normal functions as continuations:
f i nd parameterized by success and failure continuations

( def i ne ( f i nd pr ed l s t  i f - f ound i f - not - f ound)
( cond ( ( nul l ? l st )  ( i f - not - f ound) )

( ( pr ed ( car  l st ) )  ( i f - f ound ( car  l st ) ) )
( el se ( f i nd pr ed ( cdr  l st )

i f - f ound i f - not - f ound) ) ) ) )

( f i nd i s- s t r i ng? ' ( . . . )
( l ambda( x)  ‘ ( Yes , x) )
( l ambda( )  ' No) )
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Current continuation

The normal return point is an implicit continuation:
it takes the returned value and does the rest of the program

Scheme makes this continuation first-class upon request using
cal l - wi t h- cur r ent - cont i nuat i on (a.k.a. cal l / cc)

cal l / cc  takes an argument function of one argument, P,
and invokes P passing the current continuation, K, as P’s 
argument

• if P returns V normally, cal l / cc  returns V

• if P invokes K, passing one argument value, V,
P quits and cal l / cc  returns V

Example: computing products with an early exit

( def i ne ( pr od l s t )
( cal l / cc ( l ambda ( exi t )  ; ;  exit: reified context

( f ol dl
( l ambda ( x  accum)

( i f  ( zer o? x)
( ex i t  0)  ; ;  break out of loop, return 0
( *  x accum)  ; ;  continue multiplying

) )
1 l st ) ) ) )
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Another example: threads

Task: implement a lightweight non-preemptive thread package

API:

• ( f or k f) : creates a new (initially suspended) thread, 
which evaluates ( f)  when first resumed
and dies when evaluation is done

• ( suspend) : suspends the current thread, then runs each 
other suspended thread till it suspends again, then 
resumes the current thread by returning

An example, with 3 threads:

( def i ne ( t est - t hr eads)

( f or k ( l ambda( )
( di spl ay " hi \ n" )  ( suspend)
( di spl ay " t her e\ n" )  ( suspend) ) )

  ( f or k  ( l ambda( )
( di spl ay " j oe\ n" )  ( suspend)
( di spl ay " l oui s\ n" )  ( suspend) ) )

( di spl ay " A\ n" )  ( suspend)
( di spl ay " B\ n" )  ( suspend)
( di spl ay " C\ n" )  ( suspend)
( di spl ay " D\ n" )  ( suspend) )
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Threads via continuations (part 1 of 2)

Maintain a list of suspended “thread” objects,
represented by functions to call to resume the thread

( def i ne t hr ead- queue ( ) )

( def i ne ( enq- t hr ead!  f )
( set !  t hr ead- queue

( append t hr ead- queue ( l i st  f ) ) ) )

( def i ne ( deq- t hr ead! )
( l et  ( ( f  ( car  t hr ead- queue) ) )

( set !  t hr ead- queue ( cdr  t hr ead- queue) )
f ) )
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Threads via continuations (part 2 of 2)

Fork adds a new thread to the queue, which dies when done

( def i ne ( f or k  f )
( enq- t hr ead!

( l ambda( )
( f )
( r un- next - t hr ead) ) ) )

Suspend uses cal l / cc  to create a handle for the current 
thread, saves it, then switches to the next thread in the queue

• eventually this thread will be resumed by some other 
thread’s suspend call

( def i ne ( suspend)
( cal l / cc ( l ambda ( t hi s- t hr ead)

( enq- t hr ead!  ( l ambda( )  ( t hi s- t hr ead ( ) ) ) )
( r un- next - t hr ead) ) ) )

Run-next-thread runs the next thread on the queue

( def i ne ( r un- next - t hr ead)
( l et  ( ( next - t hr ead ( deq- t hr ead! ) ) )

( next - t hr ead) ) )
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Summary of continuations

Normal functions can be used as continuations

cal l / cc  reifies the implicit internal continuation as a function 
that can be manipulated like any other function

First-class continuations can do things that
otherwise require special language constructs

• exception throwing

• stack-unwind protection (like Java’s try-finally)

• coroutines and (non-preemptive) threads

• backtracking à la Prolog

Very powerful, which can be very confusing,
and hard to implement efficiently

Example: what should happen if a cal l / cc  continuation 
function is invoked more than once?

• e.g. suspend didn’t dequeue the thread, but left it on the 
queue to be resumed again


