
'

&

$

%

CSE 505: Concepts of Programming Languages

Dan Grossman

Fall 2005

Lecture 11— Intro to polymorphism; Subtyping

Dan Grossman CSE505 Fall 2005, Lecture 11 1

'

&

$

%

Where are we

• Have an operational model of functions, data structures,

primitives, etc.

• Have a simple type system to ensure we use functions as

functions, pairs as pairs, constants as constants, ...

• Digressed to:

– compare types to logic

– connect our textual rewriting to efficient implementations

using stacks and environments

• Haven’t done recursive types (e.g., lists), mutation, and

exceptions yet.

• But first let’s be less restrictive without affecting run-time

behavior

Dan Grossman CSE505 Fall 2005, Lecture 11 2

'

&

$

%

Being Less Restrictive

“Will a λ term get stuck?” is Turing complete, so a sound, decidable

type system can always be made less restrictive.

An “uninteresting” rule that is sound but not “admissable”:

Γ ` e1 : τ

Γ ` if true then e1 else e2 : τ

We’ll study ways to give one term many types (“polymorphism”).

Fact: The version of STλC with explicit argument types (λx : τ . e)

has no polymorphism:

If Γ ` e : τ1 and Γ ` e : τ2, then τ1 = τ2.

Fact: Even without explicit types, many “reuse patterns” do not

type-check. Example: (λf. (f 0, f true))(λx. (x, x))
(evaluates to ((0, 0), (true, true))).

Dan Grossman CSE505 Fall 2005, Lecture 11 3

'

&

$

%

My least favorite PL word

Polymorphism means many things. . .

• Ad hoc polymorphism: e1 + e2 in SML<C<Java<C++.

• Ad hoc, cont’d: Maybe e1 and e2 can have different run-time

types and we choose the + based on them.

• Parametric polymorphism: e.g., Γ ` λx. x : ∀α.α → α or with

explicit types: Γ ` Λα. λx : α. x : ∀α.α → α (which

“compiles” i.e. “erases” to λx. x)

• Subtype polymorphism: new Vector().add(new C()) is legal

Java because new C() has types Object and C

. . . and nothing. (I prefer “static overloading” “dynamic dispatch”

“type abstraction” and “subtyping”.)

Dan Grossman CSE505 Fall 2005, Lecture 11 4

'

&

$

%

Our plan

• Today: Subtyping, preferably without coercions

• Then: Parametric polymorphism (∀) and maybe first-class ADTs

(∃) and recursive types (µ).

(All use type variables (α).)

• Later: Dynamic-dispatch, inheritance vs. subtyping, etc.

(Concepts in OO programming)

Today’s Motto: Subtyping is not a matter of opinion!

Dan Grossman CSE505 Fall 2005, Lecture 11 5

'

&

$

%

Record types
We’ll use records to motivate subtyping:

e ::= . . . | {l1 = e1, . . . , ln = en} | e.l
τ ::= . . . | {l1 : τ1, . . . , ln : τn}
v ::= . . . | {l1 = v1, . . . , ln = vn}

ei → e′
i

{l1 = v1, . . . , li−1 = vi−1, li = ei, . . . , ln = en}
→ {l1 = v1, . . . , li−1 = vi−1, li = e′

i, . . . , ln = en}

{l1 = v1, . . . , ln = vn}.li → vi

Γ ` e1 : τ1 . . . Γ ` en : τn labels distinct

Γ ` {l1 = e1, . . . , ln = en} : {l1 : τ1, . . . , ln : τn}

Γ ` e : {l1 : τ1, . . . , ln : τn} 1 ≤ i ≤ n

Γ ` e.li : τi

Dan Grossman CSE505 Fall 2005, Lecture 11 6

'

&

$

%

Should this typecheck?

(λx : {l1:int, l2:int}. x.l1 + x.l2){l1=3, l2=4, l3=5}

Right now, it doesn’t.

Our operational semantics won’t get stuck.

Suggests width subtyping :

τ1 ≤ τ2

{l1:τ1, . . . , ln:τn, l:τ} ≤ {l1:τ1, . . . , ln:τn}

And one one new type-checking rule: Subsumption

Γ ` e : τ τ ≤ τ ′

Γ ` e : τ ′

Dan Grossman CSE505 Fall 2005, Lecture 11 7

'

&

$

%

Permutation

Our semantics for projection doesn’t care about position... So why not

let {l1=3, l2=4} have type {l2:int, l1:int}?

{l1:τ1, . . . , li−1:τi−1, li:τi, . . . , ln:τn} ≤
{l1:τ1, . . . , li:τi, li−1:τi−1, . . . , ln:τn}

Example with width: Show

· ` {l1=7, l2=8, l3=9} : {l2:int, l1:int}.

It’s no longer clear what an (efficient, sound, complete) algorithm

should be. They sometimes exist and sometimes don’t. Here they do.

Dan Grossman CSE505 Fall 2005, Lecture 11 8

'

&

$

%

Transitivity

Subtyping is always transitive. We can add a rule for that:

τ1 ≤ τ2 τ2 ≤ τ3

τ1 ≤ τ3

Or just use the subsumption rule multiple times.

Or both.

In any case, type-checking is no longer syntax-directed: Given

Γ ` e : τ1, there may be 0, 1, or many ways to show Γ ` e : τ2.

So we could (hopefully) define an algorithm and prove it succeeds

exactly when there exists a derivation.

Just like you did in homework 2!

Dan Grossman CSE505 Fall 2005, Lecture 11 9

'

&

$

%

Digression: Efficiency

With our semantics, width and permutation subtyping make perfect

sense.

But it would be nice to compile e.l down to:

1. evaluate e to a record stored at an address a

2. load a into a register r1

3. load field l from a fixed offset (e.g., 4) into r2

Many type systems are engineered to make this easy for compiler

writers.

Makes restrictions seem odd if you do not know techniques for

implementing high-level languages. (CSE501)

Dan Grossman CSE505 Fall 2005, Lecture 11 10

'

&

$

%

Digression continued

With width subtyping, the strategy is easy. (No problem.)

With permutation subtyping, it’s easy but have to “alphabetize”.

With both, it’s not easy. . .

f1 : {l1 : int} → int f2 : {l2 : int} → int

x1 = {l1 = 0, l2 = 0} x2 = {l2 = 0, l3 = 0}
f1(x1) f2(x1) f2(x2)

Can use dictionary-passing (look up offset at run-time) and maybe

optimize away (some) lookups.

Named types can avoid this, but make code less flexible.

Dan Grossman CSE505 Fall 2005, Lecture 11 11

'

&

$

%

Depth Subtyping

With just records of ints, we miss another opportunity:

(λx : {l1:{l3:int}, l2:int}. x.l1.l3 + x.l2)
{l1={l3 = 3, l4 = 9}, l2=4}

Again, does not type-check but does not get stuck.

τi ≤ τ ′
i

{l1:τ1, . . . , li:τi, . . . , ln:τn} ≤ {l1:τ1, . . . , li:τ ′
i , . . . , ln:τn}

Note: With permutation subtyping could just allow depth on left-most

field.

Note: Soundness of this rule depends crucially on fields being

immutable. (We will get to this point.)

Dan Grossman CSE505 Fall 2005, Lecture 11 12

'

&

$

%

Function subtyping

Given our rich subtyping on records, how do we extend it to other

types, namely τ1 → τ2. For example, with width subtyping we’d like

int → {l1:int, l2:int} ≤ int → {l1:int}.

???

τ1 → τ2 ≤ τ3 → τ4

For a function to have type τ3 → τ4 it must return something of type

τ4 (including subtypes) whenever given something of type τ3

(including subtypes). A function assuming less than τ3 will do, but

not one assuming more.

Dan Grossman CSE505 Fall 2005, Lecture 11 13

'

&

$

%

Function subtyping, cont’d

τ3 ≤ τ1 τ2 ≤ τ4

τ1 → τ2 ≤ τ3 → τ4

Also want:
τ ≤ τ

Example: λx : {l1:int, l2:int}. {l1 = x.l2, l2 = x.l1} can have

type {l1:int, l2:int, l3:int} → {l1:int}
but not {l1:int} → {l1:int}.

We say function types are contravariant in their argument and

covariant in their result. (Depth subtyping means immutable records

are covariant in their fields.)

We say function types are contravariant in their argument with our

eyes closed, on one foot, IN OUR SLEEP, and we never let anybody

tell us otherwise. Ever.

Dan Grossman CSE505 Fall 2005, Lecture 11 14

'

&

$

%

Maintaining soundness

Our Preservation and Progress Lemmas still work in the presence of

subsumption. (So in theory, any subtyping mistakes would be caught

when trying to prove soundness!)

In fact, it seems too easy: induction on typing derivations makes the

subsumption case easy.

That’s because Canonical Forms is where the action is:

• If · ` v : {l1:τ1, . . . , ln:τn}, then v is a record with fields

l1, . . . , ln.

• If · ` v : τ1 → τ2, then v is a function.

Have to use induction on the typing derivation (may end with many

subsumptions) and induction on the subtyping derivation (e.g., “going

up the derivation” only adds fields)

Dan Grossman CSE505 Fall 2005, Lecture 11 15

'

&

$

%

A Matter of Opinion?

If subsumption makes well-typed terms get stuck, it is wrong.

We might allow less subsumption (for efficiency), but we shall not

allow more than is sound.

But we have been discussing “subset semantics” in which e : τ and

τ ≤ τ ′ means e is a τ ′. (There are “fewer” values of type τ than of

type τ ′, but not really.)

It is very tempting to go beyond this, but you must be very careful. . .

But first we need to emphasize a really nice property we had: Types

never affected run-time behavior.

Dan Grossman CSE505 Fall 2005, Lecture 11 16

'

&

$

%

Erasure

I.e., A program type-checks or does not. If it does, it evaluates just

like in the untyped λ-calculus. More formally, we have:

• Our language with types (e.g., λx : τ . e, inlτ1+τ2(e), etc.) and

a semantics

• Our language without types (e.g., λx. e, inl(e), etc.) and a

different (but very similar) semantics

• An erasure metafunction from first language to second

• An equivalence theorem: Erasure commutes with evaluation.

This useful (for reasoning and efficiency) fact will be less obvious (but

true) with parametric polymorphism.

Dan Grossman CSE505 Fall 2005, Lecture 11 17

'

&

$

%

Coercion Semantics

Wouldn’t it be great if. . .

• int ≤ float

• int ≤ {l1:int}

• τ ≤ string

• we could “overload the cast operator”

For these proposed τ ≤ τ ′ relationships, we need a run-time action to

turn a τ into a τ ′. Called a coercion.

Programmers could use float_of_int and similar but they whine

about it.

Dan Grossman CSE505 Fall 2005, Lecture 11 18

'

&

$

%

Implementing Coercions

If coercion C (e.g., float_of_int) “witnesses” τ ≤ τ ′ (e.g.,

int ≤ float), then we insert C when using τ ≤ τ ′ with subsumption.

So our translation to the untyped semantics depends on where we use

subsumption. So its really from typing derivations to programs.

And typing derivations aren’t deterministic (uh-oh).

Example 1: Suppose int ≤ float and τ ≤ string. Consider

· ` print string(34) : unit.

Example 2: Suppose int ≤ {l1:int}. Consider 34 == 34.

(Where == is bit-equality on ints or pointers.)

Dan Grossman CSE505 Fall 2005, Lecture 11 19

'

&

$

%

Coherence

Coercions need to be coherent, meaning they don’t have these

problems. (More formally, programs are deterministic even though

type checking is not—any typing derivation for e translates to an

equivalent program.)

You can also make (complicated) rules about where subsumption

occurs and which subtyping rules take precedence.

It’s a mess. . .

Dan Grossman CSE505 Fall 2005, Lecture 11 20

'

&

$

%

C++

Semi-Example 3: Multiple inheritance a la C++.

class C2 {};

class C3 {};

class C1 : public C2, public C3 {};

class D {

public: int f(class C2) { return 0; }

int f(class C3) { return 1; }

};

int main() { return D().f(C1()); }

Note: A compile-time error “ambiguous call”

Note: The first C++ I’ve written in a long time.

Note: Same in Java with interfaces (“reference is ambiguous”)

Dan Grossman CSE505 Fall 2005, Lecture 11 21

'

&

$

%

Where are we

• “Subset” subtyping allows “upcasts”

• “Coercive subtyping” allows casts with run-time effect

• What about “downcasts”?

That is, should we have something like:

if_hastype(τ ,e1) then x.e2 else e3

(Roughly, if at run-time e1 has type τ (or a subtype), then bind it

to x and evaluate e2. Else evaluate e3. Avoids having

exceptions.)

Dan Grossman CSE505 Fall 2005, Lecture 11 22

'

&

$

%

Downcasts

I can’t deny downcasts exist, but here are some bad things about them:

• Types don’t erase – you need to represent τ and e1’s type at

run-time. (Hidden data fields.)

• Breaks abstractions: Before, passing {l1 = 3, l2 = 4} to a

function taking {l1 : int} hid the l2 field.

• Use ML-style datatypes – now programmer decides which data

should have tags.

• Use parametric polymorphism – the right way to do container

types (not downcasting results)

Dan Grossman CSE505 Fall 2005, Lecture 11 23

