CSE505 HWO03 Sample Solution
1. Extending STAC
(a) Small step operational semantics

er — €} ey — €h e1 — €}

cons (e1,ez) — cons (e],e2)  cons (vy,e3) — cons (v1,e5)  fold (e1,e2,e3) — fold (€], ea, e3)

ey — € e3 — €4

fold (v1,e2,e3) — fold (v1, e, e3) fold (v1,v2,e3) — fold (v1,v2,€%)

fold (v1,vq,empty) — vy fold (v1,va, cons (vy,v5)) — fold (v1,v1 V2 V4, v5)

(b) New stuck states: empty z, emptyv, cons (v,v’) x, cons (v,v") v, fold (v1,ve,v3) when vz is not
empty or cons (v,v’). New nested stuck states: cons (e, e) if e is stuck, cons (v,€’) if € is stuck,
fold (e1, ea, e3) if 1 stuck, fold (v, ez, e3) if ez is stuck and fold (v, v, e3) if e is stuck.

(c¢) Typing rules

I'ke : 7 't eg:7list
I F empty : 7 list T F cons (eq,e3) : 7 list

ke :m— (12— 1) I'kFey:m 'k es: 7 list
I I fold (e1,ez2,e3) : 71

(d) Preservation, Progress, and Substitution extensions.

Preservation Lemma If-Fe:7ande— ¢, then-Fe': 7.

Proof. By induction on the height of the derivation of - - e; : 7. We must add new cases for the
bottom rule of the derivation.
e - empty : 7 list. Then e — €’ is impossible, so lemma holds vacuously.
e -t cons (e1,eq) : 7 list. Then we know - F e; : 7 and - F eg : 7 list. There are 2 ways to derive
cons (e1,e2) — €'
— €' is cons (€),e3) and e; — €}. By induction - F e} : 7, and we can derive that
- cons (e}, e2) : 7 list.
— €' is cons (ej,e)) and e; — e). By induction - - e} : 7 list, and we can derive that
- cons (e1,€h) : 7 list.
e - fold (e1,ea,e3) : 71. Then we know - Fey : 71 — (12 > 71), - Fex: 71, and - F e : 7o list.
There are 5 ways to derive fold (e, eq,e3) — €'
— ¢’ is fold (e}, ea,e3) and e; — €). By induction - F €} : 71 — (72 — 71), and we can derive
that - F fold (e}, eq,e3) : 7.
— ¢ is fold (e1,€5,e3) and ea — €. By induction - F e} : 7, and we can derive that
- fold (eq, e, e3) : 71.
— €' is fold (e1,e0,€5) and e3 — €. By induction - F ef : 75 list, and we can derive that
- |- fold (e1, ea,€%) : 1.
— eg is empty, es is some v, and €’ is also v. Then since - F e : 71, we have that - ¢’ : 7.
— e is some vy, eg is some vy, e3 is some cons (v4,vs5), and €’ is v1 vy v4. Since
I e3 = cons (v4,v5) : T2 list, we must have - - vy : 75. Since we have - - vy : 7 — (12 — 71),
- vy : 71, and - F vy @ 79, the application typing rule gives us - - v v9 v4 : 7; and from
this we can derive - I fold (v1,v1 vo v4,v5) : T.
O



Canonical Forms Lemma Extend the lemma with: If - - v : 7 list then v has the form empty
or cons (v, v2)

Proof. By inspection of the typing rules. O

Progress Lemma If - ¢ : 7, then e is a value or there exists an ¢’ such that e — ¢’.

Proof. By structural induction (syntax height) on e. The structure of e may now also have one
of the following forms:

e empty. Then e is a value.

e cons (e1, e3). By induction either e; is some v; or can become some €. If it becomes e}, then
cons (e1,ez) — cons (e}, e2). Else by induction either ey is some v9 or can become some €.
If it becomes e}, then cons (v1,e2) — cons (v, e)). Else e is cons (v1,v2), a value.

e fold (e1,e2,e3). By induction either e; is some v; or can become some e}. If it becomes
e}, then fold (e, eq,e3) — fold (€], ez, e3). Else ey = v1 and by induction either ey is some
vy or can become some €. If it becomes e}, then fold (v1,es,e3) — fold (v1,e5,e3). Else
ez = v2 and by induction either es is some vs or can become some e5. If it becomes ef,
then fold (v1,vg,e3) — fold (v1,ve,es). Otherwise e is fold (v1,ve,v3); since it typechecks,
inverting the assumed typing derivation gives - F vg : 75 list. By Canonical Forms, either
v3 is empty, in which case fold (v1,v2,v3) — w2, or vs is some cons (v4,vs), in which case
fold (Ul,’UQ,’Ug) — fold (121,1}1 (%) 1]4,1}5).

O

Extend Substitution

e1le/z] =€y exle/z] =€}
empty [e/x] = empty cons (e, e2) [e/z] = cons (€], €h)
e1 [e/x] = €} es [e/x] = € esle/x] = e}

fold (e1,e2,e3) [e/x] = fold (e}, €5, €5)

Substitution Lemma T z:7 ke :7andTFey: 7/, then Tk e [ex/z] : 7.

Proof. By induction on derivation of I,z : 7/ F e; : 7. The bottom rule could conclude:

e I'z: 7' F empty : 7 list. Then empty [es/z] = empty and T' - empty : 7 list.

e I'z:7' I cons (e3,eq4) : Tlist. Then I'yz:7' ez :7and I'z:7 F e4 : 7list. By in-
duction, we have that T' F e3z[ea/x] =€} : 7 and T' - eq[ea/x] =€} : 7 list, giving us that
T cons (es,e4) [e/x] = cons (e, €}) : 7 list.

e ' x:7' I fold (e5,eq4,e5) : 1. Then Iz :7' F ez :m — (o—m), Tba:7' F eq o 7,
and I',z : 7" F e5 : 72 list. By induction, we have that ' - e3[ea/x] =€} : 71 — (72 — T1),
I'keqlea/z] =€) : 7, and T' F e5[ea/x] = ef : 72 list, giving us that
T I fold (es,eq,e5)[e/x] = fold (e, €}, ek) : T1.

(e) Implementation: See file hw3.m1.

2. For all cases see file main.ml.



