
CSE505 HW02 Sample Solution

1. Semantics for regular expressions.

(a) (a) s ∈ r

char

x ∈ x

concat
s1 ∈ r1 s2 ∈ r2

s1s2 ∈ r1 · r2

union-1
s ∈ r1

s ∈ r1 ∨ r2

union-2
s ∈ r2

s ∈ r1 ∨ r2

star-1

ε ∈ r∗1

star-2
s1 ∈ r1 s2 ∈ r∗1

s1s2 ∈ r∗1

(b) See interp.ml.

(c) (((a)∗)∗, a): a should be accepted but the interpreter loops infinitely. (((a)∗)∗, b): b should be
rejected but the interpreter loops infinitely.

(d) Replace the rules star-2 in (a) with

star-2
s1 ∈ r1 s2 ∈ r∗1 s1 6= ε

s1s2 ∈ r∗1

(e) Proof. Let s ∈a r mean that there is a derivation of s ∈ r using part (a) semantics. rulea is rule
rule from part (a) semantics. Define s ∈e r and rulee similarly. Suppose s ∈a r. We prove that
there is a derivation s ∈e r by induction on the height of the derivation tree.

Base cases: Suppose s ∈a r can be derived in one step. The the rule at the bottom must be
chara or star-1a. In the first case, we have that r = x for some x such that x = s. Then by
chare we have s ∈e r. In the second case, r = r∗1 for some r1 and s = ε. By star-1e we have
s ∈e r.

If neither of those rules applies, the derivation tree has height n > 1 and must have one of the
other four rules at the bottom. Consider the four possibilities for the last rule.

• concata: Then s = s1s2, r = r1 · r2, s1 ∈a r1 and s2 ∈a r2. By the induction hypothesis,
s1 ∈e r1 and s2 ∈e r2. Applying the rule concat1 gives a derivation for s ∈e r.

• union-1a or union-1a: The reasoning for these cases is similar to the reasoning for the
previous case.

• star-2a: Then s = s1s2, r = r∗1 , and s1 ∈a r1 and s2 ∈a r∗1 . These last two derivations
are shorter than the original derivation so we can apply the induction hypothesis to conclude
s1 ∈e r1 and s2 ∈e r∗1 . Suppose s1 6= ε. Then applying the rule star-2e gives a derivation for
s ∈e r. Now suppose s1 = ε. Then s = s1s2 = s2 and the derivation s2 ∈e r∗1 is a derivation
for s ∈e r and we are done.

Now suppose there is a derivation s ∈e r which uses the semantics from part (e). This is shown
by induction on the height of the derivation s ∈e r. For all cases but star-2e, the reasoning is
the same as in the other direction, swapping references to the part (a) semantics and the part (e)
semantics.

For the case star-2e, suppose s ∈e r then s = s1s2, r = r∗1 , s1 ∈e r1 and s2 ∈e r∗1 . By the
induction hypothesis, s1 ∈a r1 and s2 ∈a r∗1 . Applying the rules star-2a gives a derivation for
s ∈a r.

Having shown both directions of the proof, we can conclude the theorem holds.

1



(f) See interp.ml.

2. Locks and simulating non-pre-emption

(a) Small-step operational semantics for IMP with locks.

H ; s ; q; L → H; s ; q ; L ; b

skip

H ; skip ; s::q; L → H; s ; q ; L ; false

assign
H ; e ⇓ c

H ; x := e ; q; L → H,x 7→ c; skip ; q ; L ; false

seq1

H ; skip; s ; q; L → H; s ; q ; L ; false

seq2

H ; s1 ; q; L → H ′; s′1 ; q′ ; L′ ; false

H ; s1; s2 ; q; L → H ′; s′1; s2 ; q′ ; L′ ; false

seq3

H ; s1 ; q; L → H ′; s0 ; q′::s′1 ; L′ ; true

H ; s1; s2 ; q; L → H ′; s0 ; q′::(s′1; s2) ; L′ ; true

if1
H ; e ⇓ c c > 0

H ; if e s1 s2 ; q; L → H; s1 ; q ; L ; false

if2
H ; e ⇓ c c ≤ 0

H ; if e s1 s2 ; q; L → H; s2 ; q ; L ; false

while

H ; while e s ; H; q → L; if e (s;while e s) skip ; q ; L ; false

spawn

H ; spawn(s) ; q; L → H; skip ; q::s ; L ; false

pre-empt

H ; s ; s′::q; L → H; s′ ; q::s ; L ; true

acquire

c /∈ L

H ; acquire(c) ; s::q; L → H; s ; q::skip ; L ∪ {c} ; true

release
c ∈ L

H ; release(c) ; s::q; L → H; s ; q::skip ; L− {c} ; true

(b) We will use two function, ts to translate individual statements and tt to translate whole programs
or threads.

tt(s) = acquire(0); s; release(0)

ts(yield) = release(0); acquire(0)
ts((spawn)(s)) = spawn(tt(s))
ts(if e s1 s2) = if e ts(s1) ts(s2)
ts(while e s) = while e ts(s)
ts(x := e) = x := e
ts(skip) = skip

(c) In the unmodified source language, if a thread yielded, it would always be put on the queue and
the thread on the front of the queue would be the next to be run. That cannot be simulated in

2



our language with locks because pre-emption is always optional. That is, when we release a lock,
we may be pre-empted, but we may also immediately acquire the lock again.

This question did not ask why the source language needed to have non-deterministic scheduling
added, but here is why: When a thread yields in the unmodified source language the next thread
on the queue is guaranteed to be the next thread executed. In our language with locks, if you
release a lock and are pre-empted, it may not be the case that the next thread on the queue is
always the next thread run. The next thread on the queue may be pre-empted before it can ever
acquire the lock.

3


