
CSE505 HW01 Sample Solution

1. Caml warm-up: See queues.ml.

2. Interpreter warm-up:

(a) A heap is implemented as a set of “linked” functions. Each function stores one element of the
heap and accesses the rest of the heap by calling the old heap. Newer bindings overwrite older
bindings because they are “further-out” than the older bindings. Alternately, the implementation
can be seen as implementing a linked list with functions.

(b) See interp.ml.

(c) The new code returns the old heap instead of the (potentially) updated heap. The affect of any
assignments in s1 will be discarded. For example,

ans := 1; ans := ans + 1

returns 2 in the original code but 1 in alternate code.

3. Non-preemptive threads

(a) Small-step operational semantics for IMP.

H ; s ; q → H ; s ; q ; b

skip

H ; skip ; s::q → H ; s ; q ; false

assign
H ; e ⇓ c

H ; x := e ; q → H,x 7→ c ; skip ; q ; false

seq1

H ; skip; s ; q → H ; s ; q ; false

seq2

H ; s1 ; q → H ′ ; s′
1 ; q′ ; false

H ; s1; s2 ; q → H ′ ; s′
1; s2 ; q′ ; false

seq3

H ; s1 ; q → H ′ ; s0 ; q′::s′
1 ; true

H ; s1; s2 ; q → H ′ ; s0 ; q′::(s′
1; s2) ; true

if1
H ; e ⇓ c c > 0

H ; if e s1 s2 ; q → H ; s1 ; q ; false

if2
H ; e ⇓ c c ≤ 0

H ; if e s1 s2 ; q → H ; s2 ; q ; false

while

H ; while e s ; H → q ; if e (s;while e s) skip ; q ; false

spawn

H ; spawn(s) ; q → H ; skip ; q::s ; false

yield1

H ; yield ; · → H ; skip ; · ; false

yield2

H ; yield ; s::q → H ; s ; q::skip ; true

(b) See interp.ml.

(c) See test1.

4. Language properties.

1



(a) If H; s; q → H ′; s; q′; b, then q′ and ′q have the same length.

Proof. This statement is false. Consider the rule spawn. In this rule q′ is longer that q by one.

(b) If H; s; q → H ′; s′; q′; b, then q′ and q′ have lengths that differ by at most one.

Proof. This is true. Proof by induction on the height of the derivation tree for the step H; s; q →
H ′; s′; q′; b. Expression evaluation has no effect on the queue, so we can treat rules whose premises
only involve expression evaluation as having height one.

Suppose that the derivation tree has height one. Then the rule applied must have been skip,
assign, seq1, if1, if2, while, spawn, yield1, or yield2. The first six rules and the yield1
rule leave the queue unchanged, and the theorem holds trivially. spawn adds one element to the
q so the lengths are within 1. yield2 adds one element to the queue and removes one element,
so the length of the queue before the step is the same after.

The base case holds. Now we show that it holds for n > 1. Assume the theorem holds for
derivation trees of height n− 1. If the step has a derivation of height greater than 1, the bottom
most rule in the derivation must be seq2 or seq3. If it is seq2 we know from the induction
hypothesis that the length of q′ differs from the length of q by at most 1. Because q and q′ are
the queues in the used in left and right-hand sides the conclusion, this case is complete. If the
rule is seq3 we know from the induction hypothesis that the length of q′ :: s′

1 is within 1 of the
length of q. q′ :: (s′

1; s2) has the same length as q′ :: s′
1, and this case is complete.

Having shown that the theorem holds in all cases, we are done.

(c) If H; s; q, then either s is skip and q is · or there exists H ′, s′, q′, and b such that H; s; q →
H ′; s′; q′; b.

Proof. This is true. We will show that if H; s; q, then either s is skip and q is · or there exists
H ′, s′, q′, and b such H; s; q → H ′; s′; q′; b. Furthermore, if b is true then q′ 6= ·.

We prove the theorem by induction on the height of the syntax tree for s. Suppose s has height
0. Then s is skip, yield, or x := e.

If s is skip and q = ·, we are done. Otherwise q = s :: q”, and the rule skip applies and b is false
so we are done.

If s is yield and q = · the rule yield1 applies and b is false so we are done. Otherwise q = s :: q”,
and the rule yield2 applies. b is true, but skip was added to the queue, making it non-empty, so
we are done.

If s is x := e the rule assign applies regardless of the state of q and b is false and we are done.

Now suppose s has height greater than 1. Then s is one of the other statement forms.

If s is if e s1 s2 then the rule if1 or if2 applies (since expressions always evaluate to constants),
regardless of the state of the queue. In either case, b is false, so we are done.

If s is while e s1 or spawn(s1) similar reasoning applies.

Finally, suppose s is s1;s2. s1 has a syntax tree of height less than that of s1;s2 so H; s1; q →
H ′; s′

1; q
′; b. Suppose b is false, then seq2 applies regardless of the state of the queue, furthermore,

b is false in the conclusion, so we are done. Now suppose b is true. We know by the induction
hypothesis that the queue is not empty. Therefore, seq3 applies. Furthermore, since the queue
in the conclusion is the same length as the queue in the premise, we still have the property that
when b is true, the queue is non-empty.

Having shown the theorem holds for all s, we can conclude that the theorem is true.

2



5. Static analysis

(a) See interp.ml.

(b) See interp.ml.

(c) True or false

• False: example while 1 (skip)
• False: example skip

• True: The general idea for why this is true is that spawn_count2 determines the maximum
number of spawns.

• False: example skip

3


