
'

&

$

%

CSE 505: Concepts of Programming
Languages

Dan Grossman

Fall 2003

Lecture 18

A Biased Pocket-Guide to the PL Universe

Dan Grossman CSE505 Fall 2003, Lecture 18 1

'

&

$

%

79.5 Minutes of PL left

• Review and highlights of what we did and did not do

(Semantics, Encodings, Language Features, Types,

Metatheory)

• What I’ve been doing for the last 5 years (applying

this stuff to low-level code)

A “fair but biased” view of the field

(whatever that means)

Actually, the field is at least half “language

implementation” but that’s 501 not 505. (If you want to

know how compilers deal with something, come ask me.)

Dan Grossman CSE505 Fall 2003, Lecture 18 2

'

&

$

%

Review of Basic Concepts
Semantics matters!

We must reason about what software does and does not do, if

implementations are correct, and if changes preserve meaning.

So we need a precise meaning for programs.

Do it once: Give a semantics for all programs in a language.

(Infinite number, so use induction for syntax and semantics)

Real languages are big, so build a smaller model. Key

simplifications:

• Abstract syntax

• Omitted language features

Danger: not considering related features at once

Dan Grossman CSE505 Fall 2003, Lecture 18 3

'

&

$

%

Operational Semantics

An interpreter can use rewriting to transform a program state

to another one (or an immediate answer).

When our interpreter is written in the metalanguage of a

judgment with inference rules, we have small-step operational

semantics (or large-step).

This metalanguage is convenient (instantiating rule schemas),

especially for proofs (induction on derivation height).

Omitted: Automated checking of judgments and proofs.

• Proofs by hand are wrong.

• Proofs about ML programs are too hard.

• See Twelf (or other theorem provers), TinkerType, . . .

Dan Grossman CSE505 Fall 2003, Lecture 18 4

'

&

$

%

Denotational Semantics
A compiler can give semantics as translation plus

semantics-of-target.

If the target-language and meta-language are math, this is

denotational semantics.

Can lead to elegant proofs, exploiting centuries of work,

and treating code as math is “the right thing to do”.

But building models is really hard!

Omitted: Denotation of while-loops (need

recursion-theory), denotation of lambda-calculus (maps of

environments? can avoid recursion in typed setting).

Meaning-preserving translation is compiler-correctness

Dan Grossman CSE505 Fall 2003, Lecture 18 5

'

&

$

%

Other Semantics

• Axiomatic Semantics: A program is a query-engine.

Keywords: weakest-preconditions, Hoare triples,

A program means what you can prove about it.

• Game Semantics: A program is its interaction with the

context. It is a game it “wins” when it “produces an

answer”. (Less mature idea; seems useful for dealing

with the all-important context.)

Useful? Standard ML has an impressive, small (few dozen

pages) formal semantics. O’Caml has an implementation.

Standards bodies write boat anchors. Recent success:

Wadler and XML queries.

Dan Grossman CSE505 Fall 2003, Lecture 18 6

'

&

$

%

Encodings

Our small models aren’t so small if we can encode other

features as derived forms.

Example: pairs in lambda-calculus, triples as pairs, . . .

“Syntactic sugar” is a key concept in language-definition

and language-implementation.

But special-cases are important too. Example: if-then-else

in OCaml.

Omitted: Church numerals, equivalence proofs, etc.

Dan Grossman CSE505 Fall 2003, Lecture 18 7

'

&

$

%

Language Features

We studied many features: assignment, loops, scope,

higher-order functions, tuples, records, variants, first-class

references, exceptions, objects, constructors, multimethods, . . .

We demonstrated some good design principles:

• Bindings should permit systematic renaming

(α-conversion)

• Constructs should be first-class (permit abstraction and

abbreviation)

• Constructs have intro and elim forms

• Eager vs. lazy (evaluation order, thunking)

Dan Grossman CSE505 Fall 2003, Lecture 18 8

'

&

$

%

More on first-class
We didn’t emphasize enough the convenience of first-class

status: any construct can be passed to a function, stored in a

data structure, etc.

Example: We can apply functions to computed arguments

(f(e) as opposed to f(x)). But in YFL, can you:

• Compute the function e′(e)

• Pass arguments of any type (e.g., other functions)

• Compute argument lists (cf. Java, Scheme, ML)

• Pass operators (e.g., +)

• Pass projections (e.g., .l)

1st-class allows parameterization; every language has limits

Dan Grossman CSE505 Fall 2003, Lecture 18 9

'

&

$

%

More language features

There are many features we did not examine carefully. . .

Arrays:

• introduction form (make-array function of a length

and an initial value (or function for computing it))

• elimination forms (subscript and update), may get

stuck (or cost the economy billions if it’s C)

Why do languages have arrays and records?

• Arrays allow 1st-class lengths and index-expressions

• Records have fields with different types

Nice to have the vocabulary we need!

Dan Grossman CSE505 Fall 2003, Lecture 18 10

'

&

$

%

Back to syntax
We said syntax was “uninteresting” but that’s mostly because

it’s a solved problem.

• Grammars admitting efficient automated parsers an

amazing success

• Gives rigorous technical reasons to despise deviations (e.g.,

typedef in C)

• Syntax extensions (e.g., macros) now understood as more

than textual substitution

– Always was (strings, comments, etc.)

– Macro hygiene (related to capture) crucial, rare, and

sometimes not what you want.

– Not a completely closed area (good recent papers)

Dan Grossman CSE505 Fall 2003, Lecture 18 11

'

&

$

%

Control operators

We did little interesting control-flow:

• Intraprocedural break, goto, etc. not hard but

complicates formalism

• Exceptions are interesting but can be explained as

“bubble-up an option”

• First-class continuations are extremely powerful and

mind-bending

(+ 3 (call/cc (lambda (k) (+ 4 (k 2))))) ; produces 5

But it’s first-class and can escape!

Dan Grossman CSE505 Fall 2003, Lecture 18 12

'

&

$

%

Stare at this for fun!
(let* ((x 0)

(y #t)

(z (+ 3 (call/cc (lambda (k)

(begin (set! x k) 4))))))

(if y

(begin (set! y #f) (x 5))

z))

Seriously useful for backtracking computation, coroutines (think

two communicating stacks; very painful to code up), etc.

Sometimes called the “goto of functional languages” (extremely

elegant, easy to misuse)

(The result is 8)

Dan Grossman CSE505 Fall 2003, Lecture 18 13

'

&

$

%

Continuation-Passing Style

A continuation represents the “rest of computation” much

like a “return address” in assembly code.

In fact, you can translate a λ-term into an equivalent

λ-term that always invokes explicit continuations.

A term of type τ1 → τ2 translates to one of type

τ1 → (τ2 → τans) → τans

The target of the translation is an even smaller language,

e.g., all applications are to variables.

Some functional-language compilers actually do this to

enable optimizations and/or make call/cc cheaper.

It’s also very important in theory (a smaller language)

Dan Grossman CSE505 Fall 2003, Lecture 18 14

'

&

$

%

Threads
Except for one homework problem, we ignored parallel or

concurrent execution. Key questions:

• What can happen when?

• When can a thread be interrupted or killed?

• How do threads communicate and synchronize?

• How (and how many) threads are created?

New programming errors: races and deadlocks

New optimization opportunities: scheduling, lock removal

Language support for catching errors a research

development in the last 5 years (still hot)

Dan Grossman CSE505 Fall 2003, Lecture 18 15

'

&

$

%

Logic Programming

Some languages do search for you using unification

append([],X,X)

append(cons(H,T),X,cons(H,Y)) :- append(T,X,Y)

• More than one rule can apply (leads to search)

• Must instantiate rules with same terms for same

variables.

Sound familiar? Very close connection with our

meta-language of inference rules. Our “theory” can be a

programming paradigm!

Dan Grossman CSE505 Fall 2003, Lecture 18 16

'

&

$

%

Constructs Summary

We could have spent a week or more on each of macros,

continuations, CPS, threads, coroutines, and unification.

Even in languages with just functions, objects, assignment,

and exceptions, these other constructs help you design and

can sometimes be painfully coded up.

Conceptually, we have a term language with a (rich) set of

well-defined constructs and then we consider a type system

for eliminating (everything but) a well-defined set of

programs. . .

Dan Grossman CSE505 Fall 2003, Lecture 18 17

'

&

$

%

Types

(You should know I’m called a “types person”)

• A type system can prevent bad operations (so safe

implementations need not include run-time checks)

• I program fast in ML because I rely on type-checking

• “Getting stuck” is undecidable so decidable type

systems rule out good programs.

– May need new language constructs (e.g., fix in

STLC)

– May require code duplication (hence

polymorphism)

– A balancing act to avoid the Pascal-array debacle

Dan Grossman CSE505 Fall 2003, Lecture 18 18

'

&

$

%

Just an approximation
There are other approaches to describing decidable properties of

programs:

• Dataflow analysis (plus: more convenient for flow-sensitive,

minus: less convenient for higher-order)

• Abstract interpretation (plus: defined very generally,

minus: defined very generally)

Zealots of each approach (including types) emphasize they’re

more general than the others.

Types as “abstract interpretation” example: (3) = int

(4) = int

(+) = fun x,y. if x=int and y=int then int else fail

Typechecks if abstract-interpretation does not produce “fail”

Dan Grossman CSE505 Fall 2003, Lecture 18 19

'

&

$

%

Polymorphism

If every term has one simple type, you have to duplicate

too much code (can’t write a list-library).

Subtyping allows subsumption. A subtyping rule that

makes a safe language unsafe is wrong.

Type variables allow an incomparable amount of power.

They also let us encode strong-abstractions, the end-goal

of modularity and security.

Ad-hoc polymorphism (static-overloading) saves some

keystrokes.

Dan Grossman CSE505 Fall 2003, Lecture 18 20

'

&

$

%

Metatheory
We studied many properties of our models, especially typed

λ-calculi: safety, termination, parametricity, erasure

We mentioned inference, which for ML is clever and brittle.

The coolest thing we didn’t do is the Curry-Howard

isomorphism. . . In System F, there’s no term of type α → β,

but there is one of α → (α → β) → β.

Look at the typing rules for products (and) and sums (or)!

Another reason (besides termination) we had to add fix.

“Programs are proofs” “Types are propositions”

Every type system we come up with corresponds to a logic and

vice-versa! (Constructive logic (no excluded middle) essential

to computation).

Dan Grossman CSE505 Fall 2003, Lecture 18 21

'

&

$

%

Other models
We studied two models in depth: IMP (intraprocedural

manipulation of global variables) and lambda-calculus

(lexically-scoped higher-order functions).

There are good newer core models for other paradigms:

• π-calculus for communicating processes

– There are only channels (to send and recieve) and

processes

– More primitive than λ because application becomes

one send and one receive

• σ-calculus for objects (late-binding)

• Also decades on denotational models of λ-calculi (terms

are math functions over environments)

Dan Grossman CSE505 Fall 2003, Lecture 18 22

'

&

$

%

Safety is my business

All else equal, safe language are better than unsafe ones. (Java

finally caught on after 15 years of ML, 20 of Scheme, 45 of

Lisp)

But assembly languages and C are easier to implement, easier to

reason about space and time, and (still) the de facto standard

for systems level programming and software distribution.

A safe assembly language could allow untrusted, unsigned code!

A safe C-like language could let you write (most of) your

low-level system with the same guarantee as a HLL.

But a C-like language cannot (just) use HLL techniques like

implicit indirection and garbage collection.

Dan Grossman CSE505 Fall 2003, Lecture 18 23

'

&

$

%

Shameless plugs

Did you know there’s a research language that uses a fancy type

system and flow analysis to ensure safety of C-like programs

while still allowing some manual memory management, flat

data, etc.? (I’m still working on it; real languages are hard!)

Did you know there are many language-based techniques for

finding bugs in C or C-like programs?

Automation is key; we are drowning in C code.

Almost everything we try finds bugs; can we find them all? The

most important ones? Before the hackers do?

Take 590DG – this is a hot area about to move past “I found a

lot of bugs too”

Dan Grossman CSE505 Fall 2003, Lecture 18 24

'

&

$

%

Last Slide
• Languages and models of them follow guiding principles

• Now you can’t say I didn’t show you continuations or

Curry-Howard

• We can apply this beautiful stuff to ugly languages

Defining program behavior is a key obligation of computer

science. Proving programs do not do “bad things” (e.g., violate

safety) is a “simpler” undecidable problem.

• A necessary condition for modularity

• Hard work (subtle interactions demand careful reasoning)

• Fun (get to write compilers and prove theorems)

You might have a PL issue in the next 5 years... I’m in CSE556.

Dan Grossman CSE505 Fall 2003, Lecture 18 25

