
CSE 505 Assignment 3 Solution and Grading Guide

Andy Collins

acollins@cs.washington.edu

November 17, 2003

Point distribution

Once again, homework 3 is graded out of 30 points. Overall, questions 1 and 3 were worth 4 points apiece,
and questions 2 and 4 were worth 11. By parts, parts (1a), (1b), (2a), (2b), (2d), (3a), (3b), and (4b) were
each worth 2 points, part (4a) was worth 1 point, part (2c) (the type safety proof) was worth 5 points, and
parts (4c) and (4d) were worth 4 points each.

1 Evaluation order

1.1 Reverse engineering

Most people wanted to define functions and then call them separately, which was fine, although it was not
strictly necessary and lead to some confusion about when exceptions might be raised depending on whether
something was a function definition or a variable definition. It is also not strictly necessary, as the following
will suffice:

exception Left

exception Right

let left_first_app() =

try

(raise Left) (raise Right)

with Left -> true

| Right -> false

The “answer” is false, in the sense that in an application like e1 e2 the argument e2 is evaluated before
the function e1 (and of course both are evaluated before the application itself happens). In principle, these
two issues (right-to-left evaluation of subexpressions prior to application and call-by-value semantics) are
distinct, and we can construct tests that would point this out. Consider the following:

exception Left

exception Right

let left_first_app() =

let my_fun () = raise Left; fun x -> () in

try

(my_fun ()) (raise Right) ; true

with Left -> true

| Right -> false

let not_call_by_value() =

let my_fun () = raise Left; fun x -> () in

1

try

(my_fun) (raise Right) ; true

with Left -> true

| Right -> false

This is the same as the first solution, except that I’ve made a helper function. The only difference between
left_first_app and not_call_by_value is that the former applies my_fun to () before applying that to
(raise Right). Both functions return false (try it), but for different reasons. Because my_fun will raise
an exception when it is applied, left_first_app tells us that O’Caml really does evaluate the argument
to a value before evaluating the function to a value, while not_call_by_value tells us only that O’Caml
evaluates the argument to a value before applying the function, and does not tell us whether the sub-
expression (my_fun) was evaluated to a value before the sub-expression (raise Right). Because O’Caml is
both right-to-left and call-by-value, this distinction is almost ambiguous but not quite, and I gave one point
out of two for solutions that exhibited call-by-valueness rather than right-to-leftness. To put this into english
rather than O’Caml, convince yourself that the following two questions are asking something different:

• In an expression of the form e1 e2, is e2 evaluated before e1?

• In an expression of the form e1 e2, is e2 evaluated before being applied to e1?

Some solutions ended up setting up expressions of the form e1 e2 e3 (i.e. e1 is a curried function of two
arguments, and e2 and e3 are the arguments) and then showing that e3 is evaluated before e2. This is correct,
and in the sense of the argument above is showing right-to-leftness.

1.2 Thunking to control evaluation order

Most solutions strongly resembled the following, which is a straightforward application of thunking:

let which_first f1 f2 b =

if b

then

let v1 = f1() in

let v2 = f2() in

v1 v2

else

let v2 = f2() in

let v1 = f1() in

v1 v2

2 Closedness as type safety

2.1 Type system

Nearly everybody’s solution looked like the following:

Γ ` x : Γ(x)

Γ, x:ok ` e : ok

Γ ` λx. e : ok

Γ ` e1 : ok Γ ` e2 : ok

Γ ` e1 e2 : ok

using our normal definition of Γ as a function mapping variables to their types. Of course this is a degenerate
case because there is only one type, so we might equally well define Γ as just a set of variables which are ok,
and rewrite the rules as

x ∈ Γ

Γ ` x : ok

Γ ∪ {x} ` e : ok

Γ ` λx. e : ok

Γ ` e1 : ok Γ ` e2 : ok

Γ ` e1 e2 : ok

using set membership and union and avoiding the entire issue of defining Γ as a function.

2

2.2 Type safety proof

Type Safety Theorem: If · ` e : ok then e diverges or e →n v for an n and v such that · ` v : ok.
The proof relies on these lemmas, which we prove below:

Preservation Lemma: If · ` e : ok and e → e′, then · ` e′ : ok.
Progress Lemma: If · ` e : ok, then e is a value or there exists an e′ such that e → e′.

Given these lemmas, we prove safety via this strengthened induction hypothesis: If · ` e : ok, then for
all n either e →m v for some m ≤ n and v such that · ` v : ok or e →n e′, · ` e′ : ok, and there exists an e′′

such that e′ → e′′. The proof is by induction on n. For n = 0, the Progress Lemma satisfies our hypothesis.
For n > 0 induction ensures the hypothesis for n − 1. If e →m v for some m ≤ (n − 1) and v such that
· ` v : ok, then we’re done because n − 1 ≤ n. Else e →n−1 e1 for some e1 such that · ` e1 : ok. By the
Progress Lemma, there’s some e′ such that e1 → e′, so e →n e′. By the Preservation Lemma · ` e′ : ok.

We prove the Progress Lemma using this Canonical Forms Lemma: If · ` v : ok, then v has the form
λx. e. Proof: Inspection of our rules shows there is no way a constant can type-check. The proof of Progress
continues by induction on the structure of e:

• If e is a value, the lemma is satisfied.

• If e is a variable x, then · ` x : ok, which is impossible. So this case holds vacuously.

• If e has the form e1 e2, then inverting · ` e1 e2 : ok ensures · ` e1 : ok and · ` e2 : ok. So if e1 is not
a value, induction ensures e1 → e′1 for some e′1. So we can derive e1 e2 → e′1 e2. Else e1 is some v1.
Then if e2 is not a value, induction ensures e2 → e′

2
for some e′

2
. So we can derive v1 e2 → v1 e′

2
. Else

e2 is some v2. Then the Canonical Forms Lemma ensures v1 has the form λx. e3. So we can derive
(λx. e3) v2 → e3[v2/x].

The Preservation Lemma uses this Substitution Lemma: If Γ, x:ok ` e1 : ok and Γ ` e2 : ok, then
Γ ` e1[e2/x] : ok. The proof is later. The proof of Preservation continues by induction on the derivation of
· ` e : ok, proceeding by cases on the bottom-most rule:

• The last rule cannot be for variables because ·(x) is never defined.

• If the last rule concludes · ` λx. e1 : ok, then the lemma holds trivially because there is no e′ such that
λx. e1 → e′.

• If the last rule concludes · ` e1 e2 : ok, then inversion ensures · ` e1 : ok and · ` e2 : ok. The derivation
of e1 e2 → e′ can have 1 of 3 forms:

– e′ is e′
1

e2 because e1 → e′
1
. Then e1 → e′

1
, · ` e1 : ok, and induction ensure · ` e′

1
: ok. So with

this and · ` e2 : ok we can derive · ` e′1 e2 : ok.

– e′ is e1 e′2 because e2 → e′2. Then e2 → e′2, · ` e2 : ok, and induction ensure · ` e′2 : ok. So with
this and · ` e1 : ok we can derive · ` e1 e′

2
: ok.

– e′ is e3[v/x] because e1 is λx. e3 and e2 is v. Then inverting · ` λx. e3 : ok ensures ·, x:ok ` e3 : ok.
This fact, · ` v : ok, and the Substitution Lemma ensure · ` e3[v/x] : ok.

We prove the Substitution Lemma by induction on the derivation of Γ, x:ok ` e1 : ok using these technical
lemmas: Exchange: If Γ, x:ok, y:ok ` e : ok then Γ, y:ok, x:ok ` e : ok. Weakening: If Γ ` e : ok and x does
not occur in e, then Γ, x:ok ` e : ok. The We proceed on the bottom-most rule used to derive Γ, x:ok ` e1 : ok:

• If e1 is some y, then either y = x or y 6= x. If y = x, then e1[e2/x] is e2 and we assumed Γ ` e2 : ok.
If y 6= x, then (Γ, x:ok)(y) = Γ(y), so Γ ` y : ok. Since y[e2/x] is y, this is what we need.

• If e1 is some ea eb, then inverting the typing derivation ensures Γ, x:ok ` ea : ok and Γ, x:ok ` eb : ok.
So by induction Γ ` ea[e2/x] : ok and Γ ` eb[e2/x] : ok. So we can derive Γ ` ea[e2/x] eb[e2/x] : ok.
Since ea[e2/x] eb[e2/x] is (ea eb)[e2/x], this is what we need.

3

• If e1 is some λy. ea, then α-conversion lets us assume y is not x does not occur in e2. Inverting the
typing derivation ensures Γ, x:ok, y:ok ` ea : ok. So the Exchange Lemma ensures Γ, y:ok, x:ok ` ea :
ok. And the Weakening Lemma with Γ ` e2 : ok ensures Γ, y:ok ` e2 : ok. So induction ensures
Γ, y:ok ` ea[e2/x] : ok. So we can derive Γ ` λy. (ea[e2/x]) : ok. Since λy. (ea[e2/x]) is (λy. ea)[e2/x],
this is what we need.

Grading notes

I was pretty happy with what I saw here overall. Not surprsingly the proofs largely followed those we did in
class (or in the book), and most people were able to adapt the general simply-typed λ-calculus type safety
proof to our system.

A number of people omitted the final step of proving type safety itself given preservation and progress.
Given that this is almost painfully easy (and unchanged from the proof we did in class), I decided to let it
slide.

For the most part, where people lost points it was for bottoming out into informal arguments too soon. I
tried to judge these based on how painfully obvious the thing that ought to have been proven is in our type
system. Thus I let almost any canonical forms argument go, as long as you pointed out at the appropriate
place that you know if you have a value, and it typechecks, then is is a λ an can be applied. On the other
hand, several people argued the substitution lemma by saying only, “e1 has no free variables, and e2 has
no free variables, so substituting one into the other can’t introduce any free variables.” This is clearly true
at the “okay means no free variables” level of reasoning, but the real definition of the typesystem is the
derivation rules, so that’s the level where we need to argue the substitution lemma.

2.3 Stuck states

The following exactly defines the stuck states s: s ::= c v | s e | v s. The intuition here (which most
people seemed to get) is that we can end up with something of the form c v where we are trying to apply a
constant, because constants are now indistinguishable from proper functions in the type system (we cannot
get x v because this will not typecheck). The recursive cases define the rest of the stuck states because
our operational semantics are call-by-value, left-to-right. Thus we cannot reduce the sub-expression e in an
expression s e because the stuck part is blocking us. Similarly we cannot reduce v s, even if v is a function
that we could apply.

Note that we were asking for the stuck states, not the will-be-stuck states. Thus c e is not a stuck state
because until we’ve reduced e to a value we can still make progress, even if we are ulimately doomed.

3 Sum-type projection

3.1 (Non)Type-safety

Pretty much everyone used a counter-example essentially like the following. Consider (inl(0)).right. This
expression is not a value but no rule in the operational semantics applies. This derivation shows it type-
checks:

· ` 0 : int

· ` inl(0) : int + int

· ` (inl(0)).right : int

I did not require more than a casual explanation of why this is stuck given the operational semantics, but I
did want to see at least an informal derivation to show that it does typecheck. I prefer this solution, with
a concrete value 0 and concrete type int + int, but I accepted abstract solutions expressed using arbitrary
values v and types.

4

3.2 Case as a derived form

Most answers strongly resembed the following macro, where we replace case e1 x.e2 | x.e3 with

if isleft(e1) then (λx. e2) (e1.left) else (λx. e3) (e1.right)

The only arguable complaint with this formulation is that it evaluates e1 twice (but not three times, because
of the way if expressions work), which some people did point out. This can be avoided by thunking:

(λy. if isleft(y) then (λx. e2) (y.left) else (λx. e3) (y.right)) e1

provided we can generate a suitably “fresh” y.
Several people wanted to use our substitution syntax in place of the (λx. e) e′ to substitute e′ for x in e. I

don’t like this solution because it isn’t really a derived form in the normal way of thinking about it, because
we are doing most of the heavy lifting in the translation itself, rather than in the translated statement. In
the end, however, I decided to let it go. For those of you who did this, the complaints that I may or may
not have written on your paper are a function only of where it was in the pile relative to the evolution of
my thinking on the issue. I went back and assigned the points after writing the comments.

4 Implementation

Overall, most people did very well here. I would say that the biggest gotcha was the way we defined the
typing syntax for rec versus fn. Each has an argument, a type, and a body, but for rec the type is for the
function as a whole (it has to be), while for fn the type is just for the argument, and the type of the function
as a whole is derived from that and the body. This showed up in various places in a few solutions.

4.1 Formal typing rule

The following is the formal typing rule for (rec f:t x. e). Nearly everyone got this right, or made what
were probably just typos.

Γ, f :τ1 → τ2, x:τ1 ` e : τ2

Γ ` rec f x.e : τ1 → τ2

4.2 Exponentiation

The following implements exponentiation (which as you discovered is mildly more complicated when you
don’t have multiplication as a primitive).

(rec exp : int->int->int base.

(fn pow:int.

(if pow > 0

then

(rec mult : int->int->int x.

(fn y:int .

(if x > 0

then y + mult (x + -1) y

else 0)))

base (exp base (pow + -1))

else 1)))

It didn’t matter (beyond a little editing on my part) whether your file just defined the function (which
was technically what we asked for and what most people did) or also applied it to a couple of test values.
Everybody’s solutions correctly computed my testcases of 23 = 8 and 57 = 78125.

5

4.3 Type-checker implementation

let mt_ctxt = []

let extend_ctxt ctxt x t = (x,t)::ctxt

let rec lookup_ctxt ctxt y =

match ctxt with

[] -> raise TypeError

| (x,t)::tl -> if x=y then t else lookup_ctxt tl y

let rec typecheck ctxt e =

match e with

True -> Bool

| False -> Bool

| If(e1,e2,e3) ->

let t1 = typecheck ctxt e1 in

let t2 = typecheck ctxt e2 in

let t3 = typecheck ctxt e3 in

if (t1=Bool) && (t2=t3)

then t2

else raise TypeError

| Const i -> Int

| Plus(e1,e2) ->

let t1 = typecheck ctxt e1 in

let t2 = typecheck ctxt e2 in

if (t1=Int) && (t2=Int)

then Int

else raise TypeError

| GreaterThan(e1,e2) ->

let t1 = typecheck ctxt e1 in

let t2 = typecheck ctxt e2 in

if (t1=Int) && (t2=Int)

then Bool

else raise TypeError

| Var(x) -> lookup_ctxt ctxt x

| Fun(x,t,e) ->

let t1 = typecheck (extend_ctxt ctxt x t) e in

Arrow(t,t1)

| Apply(e1,e2) ->

let t1 = typecheck ctxt e1 in

let t2 = typecheck ctxt e2 in

(match t1 with

Arrow(t3,t4) -> if t3=t2 then t4 else raise TypeError

| _ -> raise TypeError)

| Rec(f,t,x,e) ->

(match t with

Arrow(t1,t2) ->

let c1 = extend_ctxt ctxt f t in

let c2 = extend_ctxt c1 x t1 in

let t3 = typecheck c2 e in

if t3=t2

then t

else raise TypeError

| _ -> raise TypeError)

| Closure(_,_) -> raise TypeError

6

4.4 Interpreter implementation

let rec interpret env e =

match e with

True -> e

| False -> e

| If(e1,e2,e3) ->

let v1 = interpret env e1 in

(match v1 with

True -> interpret env e2

| False -> interpret env e3

| _ -> raise RunTimeError)

| Const i -> e

| Closure(_,_) -> e

| Plus(e1,e2) ->

let v1 = interpret env e1 in

let v2 = interpret env e2 in

(match (v1,v2) with

(Const i1, Const i2) -> Const(i1+i2)

| _ -> raise RunTimeError)

| GreaterThan(e1,e2) ->

let v1 = interpret env e1 in

let v2 = interpret env e2 in

(match (v1,v2) with

(Const i1, Const i2) -> if i1 > i2 then True else False

| _ -> raise RunTimeError)

| Var(x) -> lookup_env env x

| Fun(_,_,_) -> Closure(e,env)

| Apply(e1,e2) ->

let v1 = interpret env e1 in

let v2 = interpret env e2 in

(match v1 with

Closure(Fun(x,_,e3),envc) -> interpret (extend_env envc x v2) e3

| _ -> raise RunTimeError)

| Rec(f,t,x,e) ->

Closure(Fun(x,Ignore,e),extend_env_rec env f x e)

Grading notes for (4c) and (4d)

Don’t be surprised to see error messages in the run log for these parts; it was another mistake on my part,
but I didn’t bother correcting it on paper because everybody’s code ran my two simple testcases just fine.

7

