
CSE 505, Fall 2003, Assignment 3
Due: 13 November 2003, 10:30AM (firm)

Advice: Do some of this assignment before the midterm. In particular, problems 1 and 3 don’t require
much writing and problem 2 is excellent review.

1. (Evaluation Order)

(a) (Reverse Engineering) Write an O’Caml function left_first_app of type unit->bool. The func-
tion body should contain (among other things) an expression of the form e1 e2. left_first_app
should return true if O’Caml evaluates e1 before e2 (and false if O’Caml evaluates e2 before e1).
Hint: Use exceptions (or mutable references if you prefer).

(b) (Thunking to Control Evaluation Order) Write an O’Caml function which_first of type
(unit->’a->’b)->(unit->’a)->bool->’b such that which_first x1 x2 b has these proper-
ties:

• If x1 () evaluates to v1 and x2 () evaluates to v2, then it returns the evaluation of v1 v2.
• If b is true, then it evaluates x1() before x2().
• If b is false, then it evaluates x2() before x1().

2. (Closedness as Type Safety) For this problem, let our λ-calculus syntax be e ::= c | x | λx. e | e e and
let our operational semantics be CBV left-to-right, small-step.

(a) Define a type system with only one type (called ok) with this property: We should be able to
derive Γ ` e : ok if and only if e contains no constants and all free variables in e are in Γ. (In
particular, · ` e : ok implies e has no free variables.)

(b) Give an expression such that · ` e : ok but e is not well-typed in the simply-typed λ-calculus.

(c) Prove Type Safety for your type system with respect to the operational semantics.

(d) If we add the rule
Γ ` c : ok

, your type system should no longer be safe. Give an inductive

definition of the stuck states a term that type-checks with this new rule could get to. Do not
treat values (which include constants) as stuck for the purpose of this definition.

3. (Sum-Type Projection) In lecture, we added sum-types and a case expression to the simply-typed λ-
calculus. Consider a language that does not have case expressions, but does have conditionals (as in
lecture), “sum projections”, and “tag tests”:

e ::= . . . | e.left | e.right | isleft(e)

e → e′

e.left → e′.left

e → e′

e.right → e′.right

e → e′

isleft(e) → isleft(e′)

(inl(v)).left → v (inr(v)).right → v isleft(inl(v)) → true isleft(inr(v)) → false

Γ ` e : τ1 + τ2

Γ ` e.left : τ1

Γ ` e : τ1 + τ2

Γ ` e.right : τ2

Γ ` e : τ1 + τ2

Γ ` isleft(e) : bool

(a) Prove that this language is not type-safe. (That is, give an expression, show that it type-checks,
and show that it gets stuck without reaching a value.)

(b) Show how we can use conditionals, sum projections, and tag tests to make case expressions a
“derived form” (i.e., a macro).
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4. (Implementation) The code provided to you defines abstract syntax and a parser for the simply-typed
λ-calculus with booleans, constants, addition, the > comparison, and rec (instead of fix). To make
parsing and type-checking easier, functions have the concrete form (fn x:t. e). Specfically, they
must be surrounded by parentheses, they must have explicit argument types, and the “:” and “.” must
be present.
Similarly, recursive functions have the form (rec f:t x. e). This creates a recursive function of
type t. In e, f is bound to the function and x is bound to the argument.
Conditionals require parentheses.

(a) Give a formal typing rule for rec f x.e in the simply-typed λ-calculus. (Hint: Extend the context
with f and x to type-check e.)

(b) Define an exponentiation function in this language. That is, give a term of type int->int->int
such that applying it to n and m returns nm.

(c) Implement the type-checker for this language by changing Main.typecheck. Your type-checker
should raise an exception if the expression does not type-check (or if it encounters the Closure
variant, which is explained below).

(d) Implement a large-step environment-based interpreter by changing Main.interpret. Such an
interpreter is explained below. Your interpreter should raise an exception if it gets stuck. (But
expressions that type-check should not get stuck). You will see that the code for implementing
environments is provided to you.

An environment-based interpreter does not use substitution. Instead, the program state includes an
environment, which maps variables to values. To implement lexical scope correctly, functions are not
values—they evaluate to closures (written <e, E> below). Here is a formal large-step semantics using
this approach (omitting booleans, conditionals, >, and rec). Pay particular attention to the rule for
function application—we evaluate function bodies using the environment in its closure!

e ::= c | x | λx. e | e e | rec f x.e | <λx. e, E>
E ::= · | E, x 7→ v
v ::= c | <λx. e, E>

E; v ⇓ v E;x ⇓ E(x) E;λx. e ⇓ <λx. e, E>

E; e1 ⇓ <λx. e3, E1> E; e2 ⇓ v2 E1, x 7→ v2; e3 ⇓ v

E; e1 e2 ⇓ v

As usual with large-step semantics, evaluation order is not fully specified. (We’re CBV, but your
implementation can be left-to-right or right-to-left.)
Formalizing rec without substitution is interesting. What we want is E; rec f x.e ⇓ <λx. e, E′> where
E′ = E, f 7→ <λx. e, E′>, which has a circularity. In math, we would take a fix-point over an
environment-generator. In O’Caml, we need to either represent our environment with a recursive
function or with a circular data structure (which requires mutation). The code given to you shows
both approaches. (Note the first approach just pushes the problem off to O’Caml’s implementors,
making them be the ones who build a circular data structure.)
You can probably do the homework without understanding most of the previous paragraph.

What to turn in:

• A file called evalorder.ml for Problem 1.

• Written/printed solution for Problems 2, 3, and 4a.

• A file called exponent for problem 4b.

• A modified main.ml for Problem 4c and d.

Note: I encourage you to post interesting test programs (that don’t implement exponentiation) to cse505.
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