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This is intended to be a combination sample solution, explanation of the sample solution, grading guide
(mostly for me), and grading feedback document. We’ll see if this works better than the arrangement from
homework 1. One implication is that I will have to update this document after I’m done grading, to roll in
feedback about how people actually did.

Point distribution

Like homework 1, homework 2 is graded out of 30 points. Overall, question 1 was worth 10 points, and
question 2 (which had more parts and more proofs) 20. Question (2f) was worth 5, which seemed reasonable
to me. Whether you think of question (2f) as extra credit is purely a matter of perspective; I chose to mark
it as part of the 30 points possible, but if you want to think of it as true extra credit, then the assignment is
out of 25 points. Breaking down the parts of the questions, (1a) and (1b) were worth 3 points each, so (1c)
was worth 4. Question (2a) was worth 4 points, and (2b) 2 points (since it didn’t require the full derivations).
(2c) was worth 4 points, and (2d) 3 points, although these are a little convolved in their grading because
they were so similar and tended to rely on a common lemma. By subtraction, then question (2d) was worth
2 points.

This homework I decided to grade positively, so you should find a number for each of the nine subparts,
and the sum of those numbers should be your total grade. Obviously if I’ve made any math errors I’ll be
happy to fix them.

1 Truth tables

1.1 Large-step operational semantics

Overall, people did pretty well here. There wasn’t much confusion between large-step and small-step seman-
tics, which probably isn’t too surprising since large-step is the more natural thing to do in this situation.
There were basically two sorts of answers here, the “truth-tables-as-rules” solutions, which encoded the mean-
ing of the logical operators in the creation of multiple rules for each operator, where only one rule would
apply based on whether the inputs reduced to true or false, and the “mathematical-operators” solutions,
which assumed the existence of “mathematical” logical operators whose behavior was already understood,
and defined the truth-table semantics in terms of those operators (in much the same way we used the math
+ and · operators to define our IMP semantics). Either was acceptable, although in my opinion the “truth-
tables-as-rules” approach is more elegant, even though it takes up about three times as much paper. When
using the “mathematical-operators” approach, it was necessary to say something to make it clear that you
understood which were the truth-table operators and which were the mathematical operators, and that was
worth one point of the three.

There were also a few “macro-based” solutions, which defined implication and if-and-only-if in terms of
the truth-table and and or operators. This is orthogonal to the “truth-tables-as-rules” or “mathematical-
operators” distinction, and was also fine.
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Sample solution

This is a non-”macro-based,” “truth-tables-as-rules” solution. The truth table itself is represented much like
our IMP heap. Notice that it is not necessary to have four rules for all of the binary operators; and, or,
and implies can be implemented with three by doing the equivalent of short-circuit evaluation. The rule for
if-and-only-if uses a single rule to capture both true cases by specifying the same arbitrary truth value c for
each sub-evaluation.

t(x) =







c if t = t, x = c

t′(x) if t = t′, y = c′

false if t = ·

t ; c ⇓ c t ; x ⇓ t(x)

t ; f ⇓ true

t ; ¬f ⇓ false

t ; f ⇓ false

t ; ¬f ⇓ true

t ; f1 ⇓ true t ; f2 ⇓ true

t ; f1 ∧ f2 ⇓ true

t ; f1 ⇓ false

t ; f1 ∧ f2 ⇓ false

t ; f2 ⇓ false

t ; f1 ∧ f2 ⇓ false

t ; f1 ⇓ false t ; f2 ⇓ false

t ; f1 ∨ f2 ⇓ false

t ; f1 ⇓ true

t ; f1 ∨ f2 ⇓ true

t ; f2 ⇓ true

t ; f1 ∨ f2 ⇓ true

t ; f1 ⇓ true t ; f2 ⇓ false

t ; f1 → f2 ⇓ false

t ; f1 ⇓ false

t ; f1 → f2 ⇓ true

t ; f2 ⇓ true

t ; f1 → f2 ⇓ true

t ; f1 ⇓ c t ; f2 ⇓ c

t ; f1 ↔ f2 ⇓ true

t ; f1 ⇓ true t ; f2 ⇓ false

t ; f1 ↔ f2 ⇓ false

t ; f1 ⇓ false t ; f2 ⇓ true

t ; f1 ↔ f2 ⇓ false

Grading notes

• I assumed that anyone who just defined the logical operators in terms of logical operators without saying
anything else about where the “right-side” operators came from or what they meant understood that
they were doing a “mathematical-operators” solution, but I docked a point for failing to say something
about where they came from. I accepted almost anything said about them as sufficient explanation.

• I assumed that anyone who omitted the definition of the truth-table lookup function was assuming
some reasonable such function, and worked from there, but I docked a point because I think that it’s
important to carry these things out fully and the semantics of the truth table are important to the
semantics of the whole combination. I don’t think that anybody who did put down a defintion of the
lookup got it wrong. I saw some solutions that didn’t define a meaning for lookup in the empty heap,
but I don’t see that as an error when you are the one defining the semantics.

• The exception to the “undeclared assumption of mathematical logical operators” rule was the use of
= and 6= for boolean equality (which is exactly if-and-only-if) and its negation. This tended to appear
in the if-and-only-if rule, to say that the two parts had to evaluate to constants, and those constants
had to be the same or not. Technically you should implement the “be the same” test by using the
same variable name, and you should avoid the “not be the same” test, because the distinction between
variable identity and value identity is tricky in first order logic.

1.2 Interpreter implementation

I ran everybody’s interpreter on a set of 20 testcases. Two of these were somewhat complex expressions,
and the others were individual tests of the different operators. Everybody’s interpreters passed all the tests.
I rougly allocated one point for the overall form of the interpreter (basically its type), one for functionality
(which everyone got), and one for random code stuff.
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Sample solution

This interpreter follows the outline of a “mathematical-operators” semantics, in that it has one major case
per construct. The truth tables for the operators are encoded in the match expressions within each case.
For the binary operators, we first recursively interpret the sub-expressions down to True or False, and then
build a pair of the two arguments and match on that. Extensive use of the _ to match all other cases keeps
the length of the code down.

let rec lookup v table =

match table with

[] -> False

| (x,c)::tl -> if x=v then c else lookup v tl

let rec interpret table formula =

match formula with

Const c -> c

| Var v -> lookup v table

| Not f ->

(match interpret table f with

True -> False

| False -> True)

| And(f1,f2) ->

(match (interpret table f1, interpret table f2) with

(True,True) -> True

| _ -> False)

| Or(f1,f2) ->

(match (interpret table f1, interpret table f2) with

(False,False) -> False

| _ -> True)

| Implies(f1,f2) ->

(match (interpret table f1, interpret table f2) with

(True,False) -> False

| _ -> True)

| Iff(f1,f2) ->

(match (interpret table f1, interpret table f2) with

(True,True) -> True

| (False,False) -> True

| _ -> False)

Grading notes

1.3 Denotational translator for truth-tables

Among the useful tools for grading this part was running ocamlc -i to see the types of your denote_table
and denote_formula functions. You’ll see this output in the log. I roughly allocated the four points for this
part as one point for the overall form, two points for keeping the AST out of the denoted transformation
(which admittedly can be subtle, but was important), and one point for functionality. I occasionally gave
one point out of two for small AST leaks that looked more like typos in an otherwise proper outline.

Sample solution

The critical thing to see in this solution is the way we use the let constructs to “pull out” the recursive
exploration of the AST from the function we build to denote the result. If we buried the recursive calls to
denote_formula inside the fun construct, that would delay translation until runtime, making this back into
an interpreter.
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let denote_constant c =

match c with

True -> true

| False -> false

let rec denote_formula formula =

match formula with

Const c ->

let dc = denote_constant c in

(fun t -> dc)

| Var v ->

(fun t -> t v)

| Not f ->

let df = denote_formula f in

(fun t -> not (df t))

| And(f1,f2) ->

let df1 = denote_formula f1 in

let df2 = denote_formula f2 in

(fun t -> (df1 t) && (df2 t))

| Or(f1,f2) ->

let df1 = denote_formula f1 in

let df2 = denote_formula f2 in

(fun t -> (df1 t) || (df2 t))

| Implies(f1,f2) ->

let df1 = denote_formula f1 in

let df2 = denote_formula f2 in

(fun t -> (not (df1 t)) || (df2 t))

| Iff(f1,f2) ->

let df1 = denote_formula f1 in

let df2 = denote_formula f2 in

(fun t ->

let a1 = (df1 t) in

let a2 = (df2 t) in

(a1 && a2) || ((not a1) && (not a2)))

let rec denote_table table =

match table with

[] -> (fun x -> false)

| (x,c)::tl ->

let dc = denote_constant c in

let dtl = denote_table tl in

(fun y -> if x=y then dc else dtl y)

Grading notes

Far and away the most common error was failure to “pull up” the recursive calls as described above. This
not only leaks the AST into the “denoted” version of the formula, but it also alters the order of evaluation,
so that this isn’t even a translator, but is really just the interpreter all over again but slightly thunked. This
almost inevitably earned two points out of four by my grading guide, which is probably generous, even for
something that appears to work externally.

A variation on this was to just wrap the entire interpreter in a fun construct (and change the name to
make it sound like a denoter). This is arguably worse than the above, although logic dictated the same
grading.

The most common minor error was to do the same thing (failure to pull up the recursion in this case),
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but only in the denote_table function.

2 Nondeterministic IMP

2.1 Extension A makes IMP non-deterministic

We really wanted to see the full derivations here. Yes they are annoying and pedantic, but we want to make
sure we really understand the basics before we just sweep them under the rug. Thus, the program/counter-
example was worth one point, the sequence of steps was worth one, and the derivations on each step two.

Note that it really is necessary to lay out this problem in what amounts to two dimensions; there really
must be multiple steps in the small-step semantics (no single step can illustrate non-determinism here) and
some the steps can only be shown using at least two levels of rule application, because the non-skip rules for
s1 ‖ s2 are not axioms, and you have to prove that the statements inside reduce as you need them to.

Finally, although either was sufficient, it turns out to be much easier to show programs that terminate
with different results than to show programs that do or don’t terminate, just because the application of the
assignment rule is simpler than the looping rules. A correct solution for a loops/doesn’t-loop example was
probably twice as long. Also, although it was obvious and I didn’t worry about it, because these extensions
make IMP non-deterministic, meerly reaching a repeated state does not mean that the program cannot
terminate, only that it might not terminate, because we can keep applying the same set of rules over and
over.

Sample solution

Consider ans := 0 ‖ ans := 1. First derivation:

· ; 0 ⇓ 0

· ; ans := 0 → ·, ans 7→ 0 ; skip

· ; ans := 0 ‖ ans := 1 → ·, ans 7→ 0 ; skip ‖ ans := 1

· ; 1 ⇓ 1

·, ans 7→ 0 ; ans := 1 → ·, ans 7→ 0, ans 7→ 1 ; skip

·, ans 7→ 0 ; skip ‖ ans := 1 → ·, ans 7→ 0, ans 7→ 1 ; skip ‖ skip

·, ans 7→ 0, ans 7→ 1 ; skip ‖ skip → ·, ans 7→ 0, ans 7→ 1 ; skip

Second derivation:

· ; 1 ⇓ 1

· ; ans := 1 → ·, ans 7→ 1 ; skip

· ; ans := 0 ‖ ans := 1 → ·, ans 7→ 1 ; ns := 0 ‖ skip

· ; 0 ⇓ 0

·, ans 7→ 1 ; ans := 0 → ·, ans 7→ 1, ans 7→ 0 ; skip

·, ans 7→ 1 ; ans := 0 ‖ skip → ·, ans 7→ 1, ans 7→ 0 ; skip ‖ skip

·, ans 7→ 1, ans 7→ 0 ; skip ‖ skip → ·, ans 7→ 1, ans 7→ 0 ; skip

Grading notes

A common weakness, which I let slide, was omitting the bar over the top rule in the derivation. As a matter
of form, a derivation tree must work back to axioms, which means that the top rules applied must all have
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no requirements “over the bar.” The bar is not optional.
Also, several people specified a starting point that wasn’t really a stand-alone program. The typical

examples were starting with a statement and a non-empty heap (for convenience, presumably, rather than
putting in another assignment and showing those steps), and specifying not a single statement s but two
statements s1 and s2 where the entire program was implicitly s1 ‖ s2. I let both of these slide with the
obvious interpretations.

2.2 Extension B makes IMP non-deterministic

Sample solution

Consider ans := 0 ‖ ans := 1. There are many possible state sequences. Here are two that produce different
answers.

· ; ans := 0 ‖ ans := 1
→ ·, ans 7→ 0 ; skip ‖ ans := 1
→ ·, ans 7→ 0 ; ans := 1
→ ·, ans 7→ 0, ans 7→ 1 ; skip

· ; ans := 0 ‖ ans := 1
→ · ; ans := 1 ‖ ans := 0
→ ·, ans 7→ 1 ; skip ‖ ans := 0
→ ·, ans 7→ 1 ; ans := 0
→ ·, ans 7→ 1, ans 7→ 0 ; skip

Grading notes

A couple of people used the intuition from question (2e) here, rather than just using the same program from
above. This works too.

2.3 Divergence under A implies divergence under B

The main challenge for this question and the next is to understand that, however we phrase it, we are doing
induction in two directions. Because we are talking about the behavior of the program over many steps,
we end up needing to use induction on the number of step taken. But at the same time, we can’t forget
that each step can involve an arbitrarily complex derivation, and we must also set up an induction on the
structure of this derivation in order to show what we need for each step.

The intuition here is that extension B can always simulate any step of extension A in one or more steps.
This is true because the only rule in extension A that does not directly correspond to a rule in extension B
is A2, but that can be simulated by using B2, B1, and B2 again.

This problem and the next were graded collectively, since everybody ended up solving them in an es-
sentially integrated manner. I ended up with a scheme that awarded a large fraction of the points for the
concepts of the proof, plus a few for specific and general details. Basically, the concepts I looked for were

• The simulation of rule A2 using rule B2, B1, and B2 again

• The use of one or more lemmas to formalize the simulation

• Correct application of the lemmas to part (2d)

• Use of induction on n to rigorously prove that we can carry simulation to an arbitrary number of steps

• Use of structural induction to rigorously prove that a single step can really be simulated, and/or use
of a prefix argument to rigorously show that the existence of a longer sequence of steps implies our
definition of divergence.

All of these were worth about a point, except induction on n, which was worth two if you did it right, and
one if you made a rough argument based on infinite sequences. Finally, I awarded the last point subjectively
based on clarity of the exposition. My rambling rigor rants are in the grading notes section, and explain
what I really wanted for some of these points.
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Sample solution

This is, perhaps, the plodding and methodical version, using two lemmas to carefully separate and set up
the two inductions. Note also the careful use of the definition of divergence to tie the lemmas back to the
theorem.

Lemma 1 If H ; s → H ′ ; s′ under Extension A, then H ; s →n H ′ ; s′ under Extension B for some
n > 0.

Proof 1: The proof is by induction on the derivation of H ; s → H ′ ; s′ under Extension A, proceeding
by cases on the last rule used: If the last rule is assign, seq1, if1, if2, or while, then the same derivation
holds under Extension B, so the lemma holds with n = 1. This works because all of these rules are either
axioms, or require only expression-related properties. None of them require anything about sub-expressions
iterating to other sub-expressions. These cases remain:

seq2 Inverting the derivation ensures s = s1; s2 and s′ = s′1; s2 for some s1, s2, and s′1 and there is a smaller
derivation of H ; s1 → H ′ ; s′1 under Extension A. So by induction, H ; s1 →n H ′ ; s′1 under
Extension B for some n > 0. Therefore, by induction on n, we can show H ; s1; s2 →n H ′ ; s′1; s2

under Extension B by using seq2 to derive the last step.

A1 This case is analogous to the previous one.

A2 Inverting the derivation ensures s = s1 ‖ s2 and s′ = s1 ‖ s′2 for some s1, s2, and s′2 and there is a
smaller derivation of H ; s2 → H ′ ; s′2 under Extension A. So by induction, H ; s2 →n H ′ ; s′2
under Extension B for some n > 0. Therefore, by induction on n, we can show H ; s2 ‖ s1 →n

H ′ ; s′2 ‖ s1 under Extension B by using B1 to derive the last step. Furthermore, we can derive
H ; s1 ‖ s2 → H ; s2 ‖ s1 and H ′ ; s′2 ‖ s1 → H ′ ; s1 ‖ s′2 using B2, so the lemma holds with
n + 2.

A3 We can use B3 to take the same step, so the lemma holds with n = 1.

Lemma 2 If H ; s →n H ′ ; s′ under Extension A for some n > 0, then H ; s →m H ′ ; s′ under
Extension B for some m ≥ n

Proof 2: The proof is by induction on n, the number of steps taken under Extension A. The base case
is n = 1, in which case Lemma 1 holds, and therefore H ; s →m H ′ ; s′ under Extension B for some
m > 0. Since m is an integer (you can’t take half a step) and m > 0, we know m ≥ 1, so therefore m ≥ n

and therefore lemma 2 holds for n = 1.
For n > 1, assume inductively that lemma 2 holds for n − 1 steps. By assumption H ; s →n H ′ ; s′

under Extension A, which, by definition means that

1. H ; s → H ′′ ; s′′ under Extension A, and

2. H ′′ ; s′′ →n−1 H ′ ; s′ under Extension A.

By lemma 1, term 1 means that H ; s →m1 H ′′ ; s′′ under Extension B for some m1 > 0, and, by the
inductive hypothesis, term 2 means that H ′′ ; s′′ →m2 H ′ ; s′ under Extension B for some m2 ≥ n − 1.
These together mean that H ; s →m1+m2 H ′ ; s′. Since m1 > 0 and m2 ≥ n − 1, we know m1 + m2 ≥ n,
so lemma 2 holds for n steps.

Proof The proof of part (c) using lemma 2 is as follows. By definition, “H ; s diverges under Extension A”
means that, for any n > 0, there exists an H ′ and s′ such that H ; s →n H ′ ; s′ under Extension A. By
lemma 2, then, there exists an m ≥ n such that H ; s →m H ′ ; s′ under Extension B. By definition (and
because m ≥ n), this means that

1. H ; s →n H ′′ ; s′′ under Extension B, and

2. H ′′ ; s′′ →m−n H ′ ; s′ under Extension B.

so by term 1, we know that there exists an H ′′ and s′′ such that H ; s →n H ′′ ; s′′ under Extension B.
Since this is true for any n > 0, this means that H ; s diverges under extension B.
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2.4 Termination under A implies termination under B

Sample solution

Using lemma 2 from (2c), the proof of part (d) is as follows. By definition, “H ; s terminates under Extension
A” means that there exists an n > 0 such that H ; s →n H ′ ; skip under Extension A. By lemma 2, this
means that there exists a m > 0 such that H ; s →m H ′ ; skip, which means that H ; s terminates under
Extension B.

Grading notes for (2c) and (2d)

There was a strong tendency on the part of many people to try to ignore the need for structural induction
to prove what I’ve called lemma 1 by ignoring the rules of each derivation above the last rule, and carrying
the sub-evaluations under extension A to extension B by the expedient of giving them the same name and
implicitly assuming that that will work out okay. Of course it does, but the point is to prove it. To make
this clear, consider the following simple and concise non-proof of lemma 1:

Non-proof 1 By assumption, H ; s → H ′ ; s′ under extension A. The non-proof follows by cases on
the rule used:

• Any of the original IMP rules: The same rule exists under extension B, so use it, and H ; s →
H ′ ; s′ under extension B.

• A1: B1 is equivalent to A1, so use it, and H ; s → H ′ ; s′ under extension B.

• A3: when s2 is skip, B3 is equivalent to A3, so use it and H ; s → H ′ ; s′ under extension B.

• A2: s must have the form s1 ‖ s2, and s′ must be s1 ‖ s′2. Furthermore, we know that H ; s2 →
H ′ ; s′2 under extension A.1

1. H ; s1 ‖ s2 → H ; s2 ‖ s1 by rule B2

2. H ; s2 ‖ s1 → H ′ ; s′2 ‖ s1 by rule B1

3. H ′ ; s′2 ‖ s1 → H ′ ; s1 ‖ s′2 by rule B2

so therefore, again, H ; s → H ′ ; s′ under extension B.

The error in this non-proof is the application of rule B1 in the last case. The requirement of rule B1 is that
H ; s2 → H ′ ; s′2 under extension B, and the only way we can possibly know this is by induction on
the structure of the derivation, which works because s2 is a smaller statement than s, and therefore has a
shorter derivation tree. Without this we are absolutely missing the case of complex nested statements.

The other common shortcoming in part (2c) was a reliance on intuition to say that if extension A can
take an infinite number of steps, and extension B can simulate each of these steps, then that gives us an
infinite sequence of steps in extension B. The point, however, is that that is not the technical definition of
divergence. What we said in class is that H ; s diverges if for all n > 0, H ; s →n H ′ ; s′. Therefore we
need to show the existence of a sequence of length exactly n for all n > 0 under extension B. Of course it’s
insane to think that we might be able to take say 37 steps but not be able to take only 35 steps, but proof
by insanity of the contrary isn’t acceptable on its own. We need to actually say that because we can take
m ≥ n steps (and get to the same state), we can necessarily take only n steps and get somewhere, or else we
haven’t really covered all possible values of n.

2.5 Divergence under B does not imply divergence under A

This is false. The simplist counter-example is skip ‖ skip. Under Extension B, we can diverge because
H ; skip ‖ skip → H ; skip ‖ skip using B2. But under Extension A, only rule a3 applies and it causes
termination in one step.

1Of course nobody who tried this said “under extension A,” or he or she would hopefully have realized the mistake.
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2.6 Termination under B implies termination under A

The trick here is to define a relationship between statements to show that they are essentially equivalent
under extensions A and B. The R relationship given in the hint works, and proving the two lemmas firms
up the precise notion of equivalence and shows that R really does have this property. Note that you have to
do it in this order; without having proved the lemmas you cannot say that R has anything to do with the
heaps produced while executing the statements. The definition of R, after all, doesn’t say anything about
heaps.

The intuition here is that, although extension A cannot directly simulate the operation of extension B,
in particular the swapping operation of rule B2, it can still perform what amounts to the same steps as
extension B after a swap by using rule A2 to operate on the “other side” directly without swapping. Thus
we are able to work through the same series of heaps, even though the statements may never match until the
very end. In effect, rule B1 is simulated by either rule A1 or rule A2, depending on how rule B2 was used
earlier in the computation. However, in contrast to parts (2c) and (2d), we cannot directly construct such
a simulation, because the possiblity of nesting complicates everything (essentially the analog of the need for
structural induction in those parts). Here, the “rule-swapping” is effected by the use of rules R3 and R4,
which allow the equivalence property to hold regardless of the order of the equivalent subexpressions, while
still requiring that the subexpressions be equivalent.

Sample solution

We first prove the lemmas given as hints:
Lemma 1: If R(s, skip), then H ; s →∗ H ; skip under Extension A.
Proof 1: The proof is by induction on the derivation of R(s, skip), proceeding by cases on the last rule

used:

r1 Then s = skip, so the lemma holds after 0 steps.

r2 This case is impossible.

r3 This case is impossible.

r4 This case is impossible.

r5 By inversion, s = skip ‖ s1 for some s1 and R(s1, s2). By induction, H ; s1 →∗ H ; skip under
Extension A. By induction on the number of steps in that sequence, we can show H ; skip ‖ s1 →∗

H ; skip ‖ skip using A2 to derive the last step. From H ; skip ‖ skip, we can use A3 to produce H ; skip.

Lemma 2: If R(s1, s2) and H ; s2 → H ′ ; s′2 under Extension B, then there exists an s′1 such that
H ; s1 →∗ H ′ ; s′1 under Extension A and R(s′1, s

′

2).
Proof: The proof is by induction on the derivation of R(s1, s2), proceeding by cases on the last rule used:

r1 In this case s1 and s2 are the same s. We prove there exists an s′1 such that H ; s →∗ H ′ ; s′1 under
Extension A and R(s′1, s

′

2) by an inner induction on the derivation of H ; s → H ′ ; s′2, proceeding
by cases on the last rule used. For rules assign, seq1, if1, if2, and while, we can let s′1 be s′2. The
same rule lets us derive H ; s → H ′ ; s′1 under Extension B and r1 lets us derive R(s′1, s

′

1). These
cases remain:

seq2 s has the form sa; sb for some sa and sb and H ; sa → H ′ ; s′
a

under Extension B using a
smaller derivation. So by induction there exists an n and s′′a such that H ; sa →n H ′ ; s′′a
under Extension A and R(s′′a , s′a). By induction on n, we can use seq2 to show H ; sa; sb →n

H ′ ; s′′
a
; sb under Extension A. We can use r2 and r1 to show R(s′′

a
; sb, s

′

a
; sb). So letting s′1 be

s′′a ; sb suffices.

b1 (This case is analogous to the previous one.) s has the form sa ‖ sb for some sa and sb and
H ; sa → H ′ ; s′

a
under Extension B using a smaller derivation. So by induction there exists

an n and s′′a such that H ; sa →n H ′ ; s′′a under Extension A and R(s′′a, s′a). By induction on
n, we can use a1 to show H ; sa ‖ sb →n H ′ ; s′′

a
‖ sb under Extension A. We can use r3 and

r1 to show R(s′′
a
‖ sb, s

′

a
‖ sb). So letting s′1 be s′′

a
‖ sb suffices.
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b2 s has the form sa ‖ sb for some sa and sb and s′2 is sb ‖ sa. Using r4 and r1, we can derive
R(sa ‖ sb, sb ‖ sa). So it suffices to take 0 steps under Extension A and let s′1 be s.

b3 (This case is analogous to the previous one.) s has the form skip ‖ sb for some sb and s′2 is sb.
Using r5 and r1, we can derive R(skip ‖ sb, sb. So it suffices to take 0 steps under Extension A
and let )s′1 be s.

r2 In this case, s1 and s2 have the form s1a; s and s2a; s for some s1a, s2a, and s. Furthermore, R(s1a, s2a).
The derivation of H ; s2 → H ′ ; s′2 ends with seq1 or seq2.

In the former case, s2a is skip and s′2 is s. Using Lemma 1 and R(s1a, skip), we know H ; s1a →∗

H ; skip under Extension A, so we can use seq1 to show H ; s1 →∗ H ; s under Extension A.
Using r1 to show R(s, s) completes our obligations.

In the latter case, s′2 is s′2a
; s for some s′2a

and H ; s2a → H ′ ; s′2a
under Extension B. So by

induction, there exists an s′1a
such that H ; s1a →∗ H ′ ; s′1a

under Extension A and R(s′1a
, s′2a

).
We can use seq2 to show H ; s1 →∗ H ′ ; s′1a; s and r2 to show R(s′1a; s, s′2a; s).

r3 In this case, s1 and s2 have the form sa ‖ sb and sc ‖ sd. Furthermore, R(sa, sc) and R(sb, sd). The
derivation of H ; s2 → H ′ ; s′2 ends with b1, b2, or b3.

For b1, s′2 is s′
c
‖ s for some s′

c
and H ; sc → H ′ ; s′

c
under Extension B. So by induction, there

exists an s′a such that H ; sa →∗ H ′ ; s′a under Extension A and R(s′a, s′c). We can use a1 to show
H ; sa ‖ sb →∗ H ′ ; s′

a
‖ sb and r3 to show R(s′

a
‖ sb, s

′

c
‖ sd).

For b2, s′2 is sd ‖ sc. Using r4, R(sa, sc), and R(sb, sd), we can show R(s1, s
′

2). So it suffices to take 0
steps under Extension A and let s′1 be s1.

For b3, s′2 is sd and sc is skip. Therefore R(sa, skip), so Lemma 1 ensures H ; sa →∗ H ; skip

under Extension A, so we can use a1 to show H ; sa ‖ sb →∗ H ; skip ‖ sb. We can use r5 to show
R(skip ‖ sb, sd), so letting s′1 be skip ‖ sb satisfies the lemma.

r4 This case is analogous to the previous one. For case b2, we use r3 just like the previous case used r4.

r5 In this case, s1 has the form skip ‖ sa for some sa. Furthermore, R(sa, s2). So by induction H ; sa →∗

H ′ ; s′a under Extension A for some s′a such that R(s′a, s′2). So we can use a2 to show H ; skip ‖ sa →∗

H ′ ; skip ‖ s′
a

and r5 to show R(skip ‖ s′
a
, s′2). So letting s′1 be skip ‖ s′

a
satisfies the lemma.

We now use the lemmas to prove the original claim. By Lemma 2 and induction on n, if H ; s →∗

H ′ ; skip under Extension B, then there exists an s′ such that H ; s →∗ H ′ ; s′ under Extension A and
R(s′, skip). (Using the lemma requires R(s, s), which r1 provides.) By Lemma 1, H ′ ; s′ →∗ H ′ ; skip

under Extension A. So H ; s →∗ H ′ ; skip under Extension A.

Grading notes

There were basically three sorts of attempts at solutions here:

1. Those that used the relation R from the hint as-is (without embellishing it with any meaning outside
that implied by the lemmas), and attempted to prove the lemmas more-or-less along the lines of the
sample solution. Typically, the proof of the theorem using the lemmas was fairly good, and the proof
of lemma 1 followed the sample solution as well. Lemma 2 was, of course, more challenging.

2. Those that applied the intuition of the relation R (that two statements fit in the relation if the
two extensions can reduce them to skip while taking the respective heaps through the same series of
modifications) as though it were part of the definition. The typical argument here strongly resembled
a structural induction on the derivation of the proof that R(s1,s2) to show that H;s1 and H;s2 must
follow the same sequence of heaps. This is essentially a stronger statement than lemma 1, so the proof
of lemma 1 that followed was typically a trivial claim against the roughly-stated heap equivalence
property. The proofs offered for lemma 2 tended to go strange, probably because under this intuition
lemma 2 isn’t really necessary.
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This formulation also had the interesting property of confusing what was happening under extension
A and what was happening under extension B. Some people ended up more-or-less proving that R was
heap equivalence for statements executing in under same extension, which isn’t exactly useful.

3. Those that tried to wing it based on the overall intuition of simulating rule B2 by not doing anything
but flipping a bit somewhere to control whether rule A1 or A2 is used to simulate rule B1. The
weakness in this approach is in accounting for the fact that the program is more than just a single
non-determinism operator applied to purely-deterministic subparts, and that the derivations that allow
each step of the small-step semantics may be arbitrarily complex.

Some people tried to work both terminating and diverging programs into their proofs, which should be a
danger sign right off the bat because we just got through proving that divegence under extension B does not
imply divergence under extension A.
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