Simply-typed Lambda Calculus

Todd Millstein

November 5, 2001

This document formally defines the call-by-value simply-typed lambda calculus (with booleans) and provides a proof of type soundness. It is meant only as a reference, and assumes familiarity with the basic notions involved.

1 Syntax

The metavariable \(x \) ranges over an infinite set of variable names. The metavariable \(e \) ranges over expressions (terms). The metavariable \(T \) ranges over types. The metavariable \(v \) ranges over values.

\[
\begin{align*}
 e & ::= x \mid \lambda x : T . e \mid e_1 e_2 \\
 & \quad \text{true} \mid \text{false} \mid \text{if } e_1 \text{ then } e_2 \text{ else } e_3 \\
 T & ::= \text{Bool} \mid T_1 \rightarrow T_2 \\
v & ::= \lambda x : T . e \mid \text{true} \mid \text{false}
\end{align*}
\]

2 Operational Semantics

2.1 Substitution

The substitution function is defined below. We assume that renaming of bound variables is applied as necessary to make the side conditions of the third case hold.

\[
\begin{align*}
 [x \mapsto e] x & = e \\
 [x \mapsto e] x' & = x' \quad \text{if } x \neq x' \\
 [x \mapsto e](\lambda x' : T' . e') & = \lambda x' : T' . [x \mapsto e] e' \\
 [x \mapsto e](e_1 e_2) & = [x \mapsto e] e_1 [x \mapsto e] e_2 \\
 [x \mapsto e] \text{true} & = \text{true} \\
 [x \mapsto e] \text{false} & = \text{false} \\
 [x \mapsto e] \text{if } e_1 \text{ then } e_2 \text{ else } e_3 & = \text{if } [x \mapsto e] e_1 \text{ then } [x \mapsto e] e_2 \text{ else } [x \mapsto e] e_3
\end{align*}
\]

2.2 Inference Rules

The notation \(e \rightarrow e' \) means “expression \(e \) evaluates to \(e' \) in one step.”

\[
\frac{\lambda x : T . e}{[x \mapsto v] e} \quad \text{(E-AppRed)} \\
\frac{e_1 \rightarrow e'_1 \quad e_2 \rightarrow e_2}{e_1 e_2 \rightarrow e'_1 e_2} \quad \text{(E-App1)} \\
\frac{e \rightarrow e'}{v e \rightarrow v e'} \quad \text{(E-App2)} \\
\frac{\text{if } e_1 \text{ then } e_2 \text{ else } e_3}{\rightarrow e_2} \quad \text{(E-IfTrue)} \\
\frac{\text{if } e_1 \text{ then } e_2 \text{ else } e_3}{\rightarrow e_3} \quad \text{(E-IfFalse)} \\
\frac{e_1 \rightarrow e'_1 \quad e_2 \rightarrow e'_2 \quad e_3 \rightarrow e_3}{\text{if } e_1 \text{ then } e_2 \text{ else } e_3 \rightarrow e'_1 \text{ then } e'_2 \text{ else } e_3} \quad \text{(E-If)}
\]
2.3 Stuck Expressions

An expression e is stuck if it is not a value but there is no e' such that $e \rightarrow e'$. The stuck expressions can be thought of as the set of possible run-time “type” errors. The grammar of stuck expressions is as follows:

\[
stuck ::= x \quad stuck \quad true \quad false \\
\quad v \quad stuck \\
\quad if stuck \; then \; e_2 \; else \; e_3 \\
\quad if \; \lambda x : T \; x \; then \; e_2 \; else \; e_3
\]

3 Typechecking Rules

The metavariable Γ represents a type environment, which is a set of (variable name, type) pairs. Each pair with variable name x and type T is denoted $x : T$. We assume that a type environment has at most one pair for a given variable name; this can always be ensured via renaming of bound variables. If $\Gamma = \{x_1 : T_1, \ldots, x_n : T_n\}$, then we define $\text{dom}(\Gamma) = \{x_1, \ldots, x_n\}$.

A judgement of the form $\Gamma \vdash e : T$ means “expression e has type T under the typing assumptions in Γ.” If the Γ component is missing from a judgement, the type environment is assumed to be the empty set.

\[
\begin{align*}
\frac{x : T \in \Gamma}{\Gamma \vdash x : T} \quad & \quad (T-\text{Var}) \\
\frac{\Gamma \vdash true : \text{Bool}}{} \quad & \quad (T-\text{True}) \\
\frac{\Gamma \vdash false : \text{Bool}}{} \quad & \quad (T-\text{False}) \\
\frac{\Gamma \cup \{x : T_1\} \vdash e : T_2}{\Gamma \vdash (\lambda x : T_1 \; x) : T_1 \rightarrow T_2} \quad & \quad (T-\text{Abs}) \\
\frac{\Gamma \vdash e_1 : T_2 \rightarrow T \quad \Gamma \vdash e_2 : T_2}{\Gamma \vdash e_1 \; e_2 : T} \quad & \quad (T-\text{App}) \\
\frac{\Gamma \vdash e_1 : \text{Bool} \quad \Gamma \vdash e_2 : T \quad \Gamma \vdash e_3 : T}{\Gamma \vdash \text{if } e_1 \; \text{then } e_2 \; \text{else } e_3 : T} \quad & \quad (T-\text{If})
\end{align*}
\]

4 Type Soundness

Lemma (Canonical Forms):

a. If $\Gamma \vdash v : T_1 \rightarrow T_2$, then v has the form $\lambda x : T_1. e$.

b. If $\Gamma \vdash v : \text{Bool}$ then v is either true or false.

Proof: Immediate from rules T-Abs, T-True, and T-False, and the fact that no other typing rules apply to values.

Theorem (Progress): If $\vdash e : T$, then either e is a value or there exists e' such that $e \rightarrow e'$ (equivalently, $\Gamma \vdash e : T$, then e is not stuck).

Proof: By (strong) induction on the depth of the derivation of $\vdash e : T$. Case analysis of the last rule in the derivation:

- Case T-Var: Then $e = x$ and $x : T \in \emptyset$, so we have a contradiction. Therefore, T-Var cannot be the last rule in the derivation.

- Case T-App: Then $e = \lambda x : T_1. e_1$, so e is a value.

- Case T-App: Then $e = e_1 \; e_2$ and $\vdash e_1 : T_2 \rightarrow T$ and $\vdash e_2 : T_2$. By the inductive hypothesis, we have that either e_1 is a value or there exists e'_1 such that $e_1 \rightarrow e'_1$. Similarly, either e_2 is a value or there exists e'_2 such that $e_2 \rightarrow e'_2$. We perform a case analysis on these possibilities:
– Case there exists e'_1 such that $e_1 \rightarrow e'_1$: Then by E-App1 we have $e_1 \, e_2 \rightarrow e'_1 \, e_2$.

– Case e_1 is a value v_1: There are two sub-cases.

 * Case there exists e'_2 such that $e_2 \rightarrow e'_2$: Then by E-App2 we have $v_1 \, e_2 \rightarrow v_1 \, e'_2$.

 * Case e_2 is a value v_2: Since $\vdash e_1 : T_2 \rightarrow T$ and e_1 is a value v_1, by the Canonical Forms lemma we have that e_1 has the form $\lambda x : T'.e_3$. Therefore by E-AppRed we have $(\lambda x : T'.e_3)v_2 \rightarrow [x \mapsto v_2]e_3$.

• Case T-True: Then $e = \text{true}$, so e is a value.

• Case T-False: Then $e = \text{false}$, so e is a value.

• Case T-If: Then $e = e_1$ if e_1 then e_2 else e_3 and $\vdash e_1 : \text{Bool}$ and $\vdash e_2 : T$ and $\vdash e_3 : T$. By the inductive hypothesis, we have that either e_1 is a value, or there exists e'_1 such that $e_1 \rightarrow e'_1$. In the latter case, by E-If we have that if e_1 then e_2 else e_3 ___ if e'_1 then e_2 else e_3. In the former case, by the Canonical Forms lemma we have that e_1 is either true or false. If e_1 is true, then by E-IfTrue we have that if e_1 then e_2 else e_3 ___ e_2. If e_1 is false, then by E-IfFalse we have that if e_1 then e_2 else e_3 ___ e_3.

Lemma (Weakening): If $\Gamma \vdash e : T$ and $x_0 \notin \text{dom}(\Gamma)$, then $\Gamma \cup \{x_0 : T_0\} \vdash e : T$.

Proof: By (strong) induction on the depth of the derivation of $\Gamma \vdash e : T$. Case analysis of the last rule in the derivation:

• Case T-Var: Then $e = x$ and $x : T \in \Gamma$. Since $x_0 \notin \text{dom}(\Gamma)$, we have that $x_0 \neq x$. Therefore $x : T \in \Gamma \cup \{x_0 : T_0\}$, so by T-Var we have $\Gamma \cup \{x_0 : T_0\} \vdash x : T$.

• Case T-Abs: Then $e = \lambda x_1 : T_1.e_2$ and $T = T_1 \rightarrow T_2$ and $\Gamma \cup \{x_1 : T_1\} \vdash e_2 : T_2$. We assume that $x_1 \neq x_0$, renaming x_1 if necessary. Since $x_0 \notin \text{dom}(\Gamma)$, also $x_0 \notin \text{dom}(\Gamma \cup \{x_1 : T_1\})$. Therefore by the inductive hypothesis we have $\Gamma \cup \{x_1 : T_1\} \cup \{x_0 : T_0\} \vdash e_2 : T_2$. So by T-Abs we have $\Gamma \cup \{x_0 : T_0\} \vdash (\lambda x_1 : T_1.e_2) : T_1 \rightarrow T_2$.

• Case T-App: Then $e = e_1 \, e_2$ and $\Gamma \vdash e_1 : T_2 \rightarrow T$ and $\Gamma \vdash e_2 : T$. By the inductive hypothesis we have $\Gamma \cup \{x_0 : T_0\} \vdash e_1 : T_2 \rightarrow T$ and $\Gamma \cup \{x_0 : T_0\} \vdash e_2 : T$, so by T-App we have $\Gamma \cup \{x_0 : T_0\} \vdash e_1 \, e_2 : T$.

• Case T-True: Then $e = \text{true}$ and $T = \text{Bool}$. Therefore by T-True we have $\Gamma \cup \{x_0 : T_0\} \vdash \text{true} : \text{Bool}$.

• Case T-False: Then $e = \text{false}$ and $T = \text{Bool}$. Therefore by T-False we have $\Gamma \cup \{x_0 : T_0\} \vdash \text{false} : \text{Bool}$.

• Case T-If: Then $e = e_1$ if e_1 then e_2 else e_3 and $\Gamma \vdash e_1 : \text{Bool}$ and $\Gamma \vdash e_2 : T$ and $\Gamma \vdash e_3 : T$. By the inductive hypothesis we have $\Gamma \cup \{x_0 : T_0\} \vdash e_1 : \text{Bool}$ and $\Gamma \cup \{x_0 : T_0\} \vdash e_2 : T$ and $\Gamma \cup \{x_0 : T_0\} \vdash e_3 : T$, so by T-If we have $\Gamma \cup \{x_0 : T_0\} \vdash \text{if } e_1 \text{ then } e_2 \text{ else } e_3 : T$.

Lemma (Substitution): If $\Gamma \cup \{x : T\} \vdash e' : T'$ and $\Gamma \vdash v : T$, then $\Gamma \vdash [x \mapsto v]e' : T'$.

Proof: By (strong) induction on the depth of the derivation of $\Gamma \cup \{x : T\} \vdash e' : T'$. Case analysis of the last rule in the derivation:

• Case T-Var: Then $e' = x'$ and $x' : T' \in \Gamma \cup \{x : T\}$. There are two subcases:

 – Case $x' = x$: Then $[x \mapsto v]e' = [x \mapsto v]x = v$. Since we assume that $\Gamma \cup \{x : T\}$ has at most one element for each variable name, we have that $T' = T$. Finally, since $\Gamma \vdash v : T$, this case is proven.

 – Case $x' \neq x$: Then $[x \mapsto v]e' = x'$. Since $x' : T' \in \Gamma \cup \{x : T\}$ and $x' \neq x$, we have $x' : T' \in \Gamma$. Therefore by T-Var we have $\Gamma \vdash x' : T'$.
• Case T-Abs: Then $e' = \lambda x_0 : T_0 . e_1$ and $T' = T_0 \rightarrow T_1$ and $\Gamma \cup \{ x : T \} \cup \{ x_0 : T_0 \} \vdash e_1 : T_1$. Since $\Gamma \vdash v : T$, by Weakening (renaming x_0 if necessary) we have $\Gamma \cup \{ x_0 : T_0 \} \vdash v : T$, so by the inductive hypothesis we have $\Gamma \vdash \lambda x_0 : T_0 . [x \mapsto v]e_1 : T_1$. Therefore by T-Abs we have $\Gamma \vdash \lambda x_0 : T_0 . [x \mapsto v]e_1 : T_0 \rightarrow T_1$. Since we can assume that $x \neq x_0$ and x_0 not free in v, performing renaming as necessary, we have $[x \mapsto v]e' = \lambda x_0 : T_0 . [x \mapsto v]e_1$, so the result follows.

• Case T-App: Then $e' = e_1 e_2$ and $\Gamma \cup \{ x : T \} \vdash e_1 : T_2 \rightarrow T'$ and $\Gamma \cup \{ x : T \} \vdash e_2 : T_2$. Then by the inductive hypothesis we have $\Gamma \vdash [x \mapsto v]e_1 : T_2 \rightarrow T'$ and $\Gamma \vdash [x \mapsto v]e_2 : T_2$, so by T-App we have $\Gamma \vdash [x \mapsto v]e_1 [x \mapsto v]e_2 : T''$. Since $[x \mapsto v](e_1 e_2) = [x \mapsto v]e_1 [x \mapsto v]e_2$, the result follows.

• Case T-True: Then $e' = \text{true}$ and $T' = \text{Bool}$. Then by T-True we have $\Gamma \vdash \text{true} : \text{Bool}$. Since $[x \mapsto v]\text{true} = \text{true}$, the result follows.

• Case T-False: Then $e' = \text{false}$ and $T' = \text{Bool}$. Then by T-False we have $\Gamma \vdash \text{false} : \text{Bool}$. Since $[x \mapsto v]\text{false} = \text{false}$, the result follows.

• Case T-If: Then $e' = \text{if } e_1 \text{ then } e_2 \text{ else } e_3$ and $\Gamma \cup \{ x : T \} \vdash e_1 : \text{Bool}$ and $\Gamma \cup \{ x : T \} \vdash e_2 : T'$ and $\Gamma \cup \{ x : T \} \vdash e_3 : T'$. By the inductive hypothesis we have $\Gamma \vdash [x \mapsto v]e_1 : \text{Bool}$ and $\Gamma \vdash [x \mapsto v]e_2 : T'$ and $\Gamma \vdash [x \mapsto v]e_3 : T'$. Since $[x \mapsto v]\text{if } e_1 \text{ then } e_2 \text{ else } e_3 = \text{if } [x \mapsto v]e_1 \text{ then } [x \mapsto v]e_2 \text{ else } [x \mapsto v]e_3$, the result follows.

Theorem (Type Preservation): If $\Gamma \vdash e : T$ and $e \rightarrow e'$, then $\Gamma \vdash e' : T$.

Proof: By (strong) induction on the depth of the derivation of $\Gamma \vdash e : T$. Case analysis of the last rule in the derivation:

• Case T-Var: Then $e = x$. By inspection of the operational semantics, there is no e' such that $x \rightarrow e'$, so this case is satisfied trivially.

• Case T-Abs: Similar to the previous case.

• Case T-App: Then $e = e_1 e_2$ and $\Gamma \vdash e_1 : T_2 \rightarrow T$ and $\Gamma \vdash e_2 : T_2$. We’re given that $e \rightarrow e'$. Case analysis of the last rule used in the derivation of this reduction step:
 - Case E-App1: Then $e' = e'_1 e_2$ and $e_1 \rightarrow e'_1$. By the inductive hypothesis we have that $\Gamma \vdash e'_1 : T_2 \rightarrow T$. Therefore, by T-App we have $\Gamma \vdash e'_1 e_2 : T$.
 - Case E-App2: Then $e' = e_1 e'_2$ and $e_2 \rightarrow e'_2$. By the inductive hypothesis we have that $\Gamma \vdash e'_2 : T_2$. Therefore, by T-App we have $\Gamma \vdash e_1 e'_2 : T$.
 - Case E-AppRed: Then $e_1 = \lambda x : T_1 . e_3$ and $e_2 = v$ and $e' = [x \mapsto v]e_3$. Since $\Gamma \vdash e_1 : T_2 \rightarrow T$ and e_1 is a value, by the Canonical Forms lemma we have that $T_1 = T_2$, so we have $\Gamma \vdash \lambda x : T_2 . e_3 : T_2 \rightarrow T$. By inspection, this derivation must end with rule T-Abs. Therefore we have that $\Gamma \cup \{ x : T_2 \} \vdash e_3 : T$. Since $\Gamma \vdash e_2 : T_2$ and $e_2 = v$ we have $\Gamma \vdash v : T_2$. Therefore by the Substitution lemma we have $\Gamma \vdash [x \mapsto v]e_3 : T$.

• Case T-True: Then $e = \text{true}$. By inspection, there is no e' such that $\text{true} \rightarrow e'$, so this case is satisfied trivially.

• Case T-False: Similar to the previous case.

• Case T-If: Then $e = (\text{if } e_1 \text{ then } e_2 \text{ else } e_3)$ and $\Gamma \vdash e_1 : \text{Bool}$ and $\Gamma \vdash e_2 : T$ and $\Gamma \vdash e_3 : T$. We’re given that $e \rightarrow e'$. Case analysis of the last rule used in the derivation of this reduction step:
 - Case E-IfTrue: Then $e' = e_2$, so we have $\Gamma \vdash e' : T$.
 - Case E-IfFalse: Then $e' = e_3$, so we have $\Gamma \vdash e' : T$.

4
- Case E-If: Then if e_1 then e_2 else $e_3 \rightarrow e'_1$ then e_2 else e_3, where $e_1 \rightarrow e'_1$. By the inductive hypothesis we have $\Gamma \vdash e'_1 : \text{Bool}$. Therefore by T-If we have $\Gamma \vdash e'_1$ then e_2 else $e_3 : T$.

Theorem (Type Soundness #1): If $\vdash e : T$ then either e is a value or there exists e' such that $e \rightarrow e'$ and $\vdash e' : T$.

Proof: Since $\vdash e : T$, by Progress either e is a value or there exists e' such that $e \rightarrow e'$. In the latter case, by Type Preservation we have $\vdash e' : T$.

Let \rightarrow^* denote the reflexive, transitive closure of the \rightarrow relation.

Corollary (Type Soundness #2): If $\vdash e : T$ and the evaluation of e terminates, then there exists v such that $e \rightarrow^* v$ and $\vdash v : T$.

Proof: Since $\vdash e : T$, by Type Soundness #1 we have that either e is a value or there exists e' such that $e \rightarrow e'$ and $\vdash e' : T$. Since the evaluation of e terminates, some evaluation of e has finite length (number of reduction steps). We prove this corollary by induction on the length of this evaluation of e.

- Case length = 0: Then there does not exist e' such that $e \rightarrow e'$, so e must be a value. Therefore, this case is proven by taking $v = e$.

- Case length = n, where $n > 0$: Then there is at least one reduction step in the evaluation, so e is not a value. Therefore there exists e' such that $e \rightarrow e'$ and $\vdash e' : T$. Since the evaluation of e terminates, so does the evaluation of e'. Further, the evaluation of e' has length $n - 1$. Therefore, by the inductive hypothesis we have that there exists v such that $e' \rightarrow^* v$ and $\vdash v : T$. Since $e \rightarrow e'$ and $e' \rightarrow v$, we have $e \rightarrow^* v$.

5