Operational Semantics of Pure Functional Languages

Evaluation of an expression in a functional language can be described as a rewriting of the expression into a canonical form, with the function definitions as the rewrite rules.

Rewrite a function application by replacing the function application by the body of the function, substituting the actual arguments for formals, and renaming variables if needed.

Example:

Given the definition

\[
\text{double } x = x + x
\]

Evaluate

\[
\text{double } 4
\]

\[
4 + 4 \rightarrow 8
\]

Evaluation Order

Two important orders of rewriting:

- **Normal order** - rewrite the leftmost occurrence of a function application. (This is equivalent to call by name.)
- **Applicative order** - rewrite the innermost occurrence of a function application first. (This is equivalent to call by value.)

Normal order evaluation always gives the same results as lazy evaluation, but may end up evaluating an expression more times.

Examples:

\[
\text{double } x = x + x
\]

\[
\text{average } x y = (x + y) / 2
\]

To avoid confusion about infix notation, let’s re-express this as:

\[
\text{double } x = \text{plus } x x
\]

\[
\text{average } x y = \text{divide } (\text{plus } x y) 2
\]

Evaluate:

\[
\text{double } (\text{average } 2 4)
\]

Example of Normal vs. Applicative Order

Using normal order evaluation:

\[
\text{double } (\text{average } 2 4) \rightarrow
\text{plus } (\text{average } 2 4) (\text{average } 2 4) \rightarrow
\text{plus } (\text{divide } (\text{plus } 2 4) 2) (\text{average } 2 4) \rightarrow
\text{plus } 3 (\text{average } 2 4) \rightarrow
\text{plus } 3 (\text{divide } (\text{plus } 2 4) 2) \rightarrow
\text{plus } 3 3 \rightarrow
6
\]

Notice that \((\text{average } 2 4)\) was evaluated twice ... lazy evaluation would cache the results of the first evaluation.

Using applicative order evaluation:

\[
\text{double } (\text{average } 2 4) \rightarrow
\text{double } (\text{divide } (\text{plus } 2 4) 2) \rightarrow
\text{double } (\text{divide } 6 2) \rightarrow
\text{double } 3 \rightarrow
\text{plus } 3 3 \rightarrow
6
\]

Different Semantics for Normal and Applicative Order Evaluation

Now consider:

\[
\text{my}_\text{if } \text{True } x y = x
\]

\[
\text{my}_\text{if } \text{False } x y = y
\]

Evaluate:

\[
\text{my}_\text{if } (\text{less } 3 4) (\text{plus } 5 5) (\text{divide } 1 0)
\]

Normal order evaluation:

\[
\text{my}_\text{if } (\text{less } 3 4) (\text{plus } 5 5) (\text{divide } 1 0) \rightarrow
\text{my}_\text{if } \text{True } (\text{plus } 5 5) (\text{divide } 1 0) \rightarrow
(\text{plus } 5 5) \rightarrow
10
\]

Applicative order evaluation:

\[
\text{my}_\text{if } (\text{less } 3 4) (\text{plus } 5 5) (\text{divide } 1 0) \rightarrow
\text{my}_\text{if } \text{True } (\text{plus } 5 5) (\text{divide } 1 0) \rightarrow
\text{my}_\text{if } \text{True } 10 (\text{divide } 1 0) \rightarrow
\text{DIVIDE BY ZERO ERROR}
\]
Properties of Evaluation Order; Strictness

Two important properties of evaluation order:

- If there is any evaluation order that will terminate and that will not generate an error, normal order evaluation will terminate and will not generate an error.
- ANY evaluation order that terminates without error will give the same result as any other evaluation order that terminates without error.

Definition: a function f is **strict** in an argument if that argument is always evaluated whenever an application of f is evaluated.

If a function is strict in an argument, we can safely evaluate the argument first if we need the value of applying the function.

Lazy Evaluation and Strictness Analysis

We can use lazy evaluation on an ad hoc basis (e.g. for if), or for all arguments. If for all arguments, for some implementations of functional languages we can improve efficiency using strictness analysis.

- $\text{plus } a \ b$ is strict in both arguments
- $\text{if } x \ y \ z$ is strict in x, but not in y and z

We can do some analysis and sometimes decide if a user-defined function is strict in some of its arguments:

Examples:

- $\text{double } x$
 - is strict in x
- $\text{squid } n \ x = \text{if } n=0 \text{ then } x+1 \text{ else } x-n$
 - is strict in n and x
- $\text{crab } n \ x = \text{if } n=0 \text{ then } x+1 \text{ else } n$
 - is strict in n but not x

If a function is strict in an argument x, it is correct to pass x by value, even with normal order evaluation semantics.

It is not always decidable whether a function is strict in an argument - if we don’t know, pass using lazy evaluation.