
Computer Science & Engineering 505 – Midterm – Answer Key
November 9, 2001

Open book & notes – 50 minutes – 10 points per question
60 points total

Name:

Please use the back of the page if necessary for long answers.

1. Consider the following CLP(R) rules.

twice(2*N) :- smallodd(N).
smallodd(1).
smallodd(3).
smallodd(5).

Show the simplified derivation tree for the following goal.

twice(A), A>5.

I don’t want to try and convince latex to lay out a tree, so here’s a description. (We’ll also put a scanned image
on the web.)

The root of the tree is the goal

〈twice(A), A > 5 | true〉

From the root node there is a single branchR1, whereR1 is the “twice” rule.

〈smallodd(A/2), A > 5 | true〉

Under this there are three branches,R2,R3, andR4, whereR2,R3, andR4 are the three “smallodd” rules.

Here is theR2 branch.

〈 | false〉

Here is theR3 branch:

〈 | A = 6〉

Here is theR4 branch:

〈 | A = 10〉

2. HAL includes support for CHRs (constraint handling rules). The rules forand in the boolean solver, as given
in the HAL paper, are:

true(X) \ and(X,Y,Z) <=> Y=Z
false(X) \ and(X,Y,Z) <=> false(Z)
true(Y) \ and(X,Y,Z) <=> X=Z
false(Y) \ and(X,Y,Z) <=> false(Z)
true(Z) \ and(X,Y,Z) <=> true(X), true(Y)
false(Z) \ and(X,Y,Z) <=> notboth(X,Y).

1

The first of these rules says that if we match these two constraints in the current constraint store:

true(X)
and(X,Y,Z)

then we removeand(X,Y,Z) from the store and addY=Z.

(a) Give CHRs to handlenot .

true(X) \ not(X,Y) <=> false(Y)
false(X) \ not(X,Y) <=> true(Y)
true(Y) \ not(X,Y) <=> false(X)
false(Y) \ not(X,Y) <=> true(X)

(b) Give CHRs to handlexor . (You can use thenot predicate if you want.)

true(X) \ xor(X,Y,Z) <=> not(Y,Z)
false(X) \ xor(X,Y,Z) <=> Y=Z
true(Y) \ xor(X,Y,Z) <=> not(X,Z)
false(Y) \ xor(X,Y,Z) <=> X=Z
true(Z) \ xor(X,Y,Z) <=> not(X,Y)
false(Z) \ xor(X,Y,Z) <=> X=Y

3. Suppose that the following Haskell code has been loaded.

my_const k x = k

my_map f [] = []
my_map f (x:xs) = f x : my_map f xs

my_map2 f [] [] = []
my_map2 f (x:xs) (y:ys) = f x y : my_map2 f xs ys

double x = 2*x

mystery = 2 : my_map double mystery

What is the result of evaluting the following Haskell expressions? Remember that:type x asks Haskell to
print the type ofx , so in that case give just the type. Otherwise just give the value. If there is a compile-time
type error, or a non-terminating computation, say so. If the result is an infinite data structure, give some initial
parts of it. If Haskell would give an error of some sort rather than producing output, say so.

(a) :type my_const
a -> b -> a

(b) :type my_map (my_const "ho")
[a] -> [String]

(c) my_const "ho" (1/0)
"ho"

(d) mystery
[2,4,8,16,32,....

2

(e) :type my_map2
(a -> b -> c) -> [a] -> [b] -> [c]

4. Suppose that we had a version of Haskell (say Vaskell) that uses call-by-value semantics. Compare Haskell and
Vaskell. Are there expressions that evaluate to different values in Haskell and Vaskell? If there are, give an
example.

No, there aren’t any — all expressions that evaluate successfully will evaluate to the same value in Haskell and
Vaskell.

Are there expressions whose evaluation performs differently in one or the other (for example, terminating with
an error or getting into an infinite recursion in one language and not the other)? If there are, give an example.

Yes. For example, the expression

my_const "ho" (1/0)

(as given above) evaluates successfully in Haskell, but gives a divide-by-zero error in Vaskell. Generally, any
expression that evaluates without error in Vaskell will also evaluate without error in Haskell, but not vice versa.

5. Tacky but easy-to-grade true/false questions! (OK, even tackier: we’re only grading questions 5a-5e.)

This answer key includes some explanation — but you didn’t need to give any explanation in your answer.

(a) The variables in an answer returned by CLP(R) must always be a subset of the variables in the original
goal. False. There may be some additional variables. Consider thelength rule, and the goal goal
length(X,100) . The answer will include 100 new variables not in the original goal.

(b) If CLP(R) had a complete solver, it would never return an answer of “maybe”.True (by the definition of
“complete”).

(c) If Haskell used call-by-name semantics instead of lazy evaluation, there would be certain expressions
which could no longer be evaluated, since they would terminate with an error or get into an infinite recur-
sion in the call-by-name version, even though they used to work correctly in standard Haskell.False. Lazy
evaluation is the same as call-by-name, except that the first time an expression is evaluated, the value is
cached and just returned if the expression is ever evauated again.

(d) The monadic functionputStr in Haskell has the typeString -> IO () . So the expression
putStr "ho" denotes the action, that if it is ever performed, will printho . True

(e) Difference lists in CLP(R) allow programmers to append an item to a list in constant time. If we used an
ordinary list representation, rather than a difference list, the time would be proportional to the length of
the list.True

(f) In the λλλ fraternity, as part of a long-standing hazing ritual, pledges are required to apply the Y com-
binator to the lazily-evaluated recursivekeg function to compute the total yearly consumption at the
frat. (Unfortunately, nobody has ever finished solving the problem, but that hasn’t stopped the festivities.)
Whatever . . .

6. Suppose that we extend the untyped lambda calculus with a let-expression. The new syntax is

e ::= x variable
λx.e abstraction (function)
e1 e2 application (function call)
let x = e1 in e2 (let expression)

The semantics are that the system computes the value ofe1, and then evaluatese2 with that value substituted for
x (so we’re using call-by-value semantics).

3

(a) Show the the operational semantics rule(s) that need to be added to handlelet .

Here is a straightforward pair of rules:

e1 −→ e′1
let x = e1 in e2 −→ let x = e′1 in e2

(E-Let1)

let x = v in e −→ [x 7→ v]e
(E-Let2)

A perhaps more elegant alternative is to use a single rule that converts a let into a function abstraction and
application. (Note that we don’t need a separate rule to reducee1 to a value — the call-by-value semantics
for function application takes care of that.)

let x = e1 in e2 −→ (λx.e2)e1
(E-Let)

(b) What are the new values in the language (if any)? Here is the grammar for values without “let”:
v ::= λx.e

There aren’t any.

(c) What are the new stuck expressions in the language (if any)? Here is the grammar for stuck expressions
without “let”:

stuck ::= x
stucke
v stuck

If we use the first version of the operational semantics, add this rule:
stuck ::= letx = stuck ine

If we use the second version, we don’t need any new rules.

4

