
Difficulties in Understanding
New Codebases
Qiao Zhang (qiao@cs.washington.edu)

As software developers, we have all faced the task of understanding someone else’s code.
Modern day developers inevitably stand on the shoulders of giants. We lookup open source
libraries from GitHub in order to use them for our projects or extend the libraries to contribute
back to the community. As developers in a large company, we often face the daunting task of
understanding tens or hundreds of in-house software libraries and tools before we can write our
own code that is deeply embedded in a large codebase. While it is feasible to read through a
small codebase of a few files, it is often time-consuming and challenging to understand how
different pieces of code work in a large codebase totaling tens or even hundreds of files.

For the ease of exposition, let me call those who try to understand a new codebase Readers,
and those who have designed and implemented the codebase Programmers.

Underlying Causes of the Difficulties
1. Readers often only see/focus on shipped code.

a. Programmers design with abstractions, and conveying those abstractions can
help readers build a useful mental model for an effective understanding of the
code. But readers often only see/focus on the final product -- the code itself.
While well-designed and -written code can convey a good sense of the
abstractions used, code is at too low of an abstraction level for building a useful
mental model. Readers can benefit from a more top-down view.

b. Almost all code start simple, no matter how complex they get eventually. In fact,
start simple and test often is a mantra for good software engineering practices.
Programmers write function stubs and simple straight line code to test the
simplest use case before modularizing and generalizing the code. Following the
development process can often unravel the complex logic in the final version of
the code, and highlight the design hierarchy of different pieces of code.

c. Shipped code is written to cover all use cases in production, so it has to be
generic and handle all cases, e.g. it is not uncommon to see various if branches
that cover all corner cases that “obfuscate” an otherwise simple code. Readers
can benefit from seeing simple cases before understanding the more general
ones.

2. Given the same abstractions, programmers implement them differently, e.g. naming
convention, different belief about modularity, programming abilities, knowledge of
algorithms, so it is hard to read and instantly understand others’ code

Modern day developers inevitably stand on the shoulders of giants.

s.

new codebasse

abstractions,

code is at too low of an abstraction level

can oftff en unravel
design hierarchy

generic

implement them diffff erently,

instantly understand

1

2

3 4

5

6

7

8

9

10

11

Summary of Comments on zhang.pdf
Page: 1

Number: 1 Author: mernst Subject: Highlight Date: 1/11/2016 8:27:57 PM
This bromide does not add anything. Avoid content free text, and straightforwardly make your point.

Number: 2 Author: mernst Subject: Highlight Date: 1/11/2016 8:30:08 PM
After having read this paragraph, I do not understand what the problem is. Maybe it has something to do with searching for libraries, or with extending libraries, or with understanding libraries, or with
understanding programs that use libraries. These are all distinct problems that are mentioned in different parts of the above paragraph. I don't know which one you're focusing on nor whether you
think they are all actually the same. Furthermore, your text does not give concrete examples to help the reader understand.

Number: 3 Author: mernst Subject: Highlight Date: 1/11/2016 8:32:18 PM
Is this a library or code that uses a library?

Number: 4 Author: mernst Subject: Highlight Date: 1/11/2016 8:30:25 PM

Number: 5 Author: mernst Subject: Highlight Date: 1/11/2016 8:35:22 PM
And sure what you mean by abstractions. An example of an Abstraction is a procedure or a class. These are inherently obvious in the source code when one reads them. So what abstractions you have
in mind? Please try to be more concrete

Number: 6 Author: mernst Subject: Highlight Date: 1/11/2016 8:36:41 PM
Why? What is an example of a higher abstraction level? What is an example of a useful mental model, and why is the mental model obtained from the code not useful? I think that often times what a
reader can obtain from the code is not useful, but your document doesn't give any examples or help me understand what you're getting at. It's too vague for me to really react to.

Number: 7 Author: mernst Subject: Highlight Date: 1/11/2016 8:39:05 PM
What is your evidence that this is a useful process?

But it is more likely to be useful to a programmer to see the success case or the simple case without air recovery. That is not necessarily the same as what was initially implemented. (Oh, I see that you
mention this later.)

Number: 8 Author: mernst Subject: Highlight Date: 1/11/2016 8:38:03 PM
What is "design hierarchy"?

Number: 9 Author: mernst Subject: Highlight Date: 1/11/2016 8:38:32 PM
I think you mean "general" rather than "generic"

Number: 10 Author: mernst Subject: Highlight Date: 1/11/2016 8:39:48 PM
If a program has given abstraction implemented, no one else should be implemented. In fact, it is a problem if multiple programmers implement the same abstraction. Maybe that's not what you're
talking about here though.

Number: 11 Author: mernst Subject: Highlight Date: 1/11/2016 8:40:23 PM
This is too ambitious; instant understanding is unlikely regardless of coding conventions.

a. Programmers can be inconsistent in their implementation, e.g. variable names,
programming idioms, inline documentation style/completeness

b. Programmers can be lazy, e.g. without autocomplete feature of an IDE,
programmers may use short uninformative names

3. Code is often designed to be easily parsed by compiler rather than to be easily
understood by humans.

a. Code needs to be stored in a flat file, so function definitions are spread out all
over the place rather than follow the hierarchical abstraction layers that
programmers think about during design and implementation.

b. Code is organized by files that may or may not mirror the design abstractions.

Potential Solutions, Existing Deficiencies and What We Can
Improve through Tools?

1. Present readers with more than shipped code
a. A top-down architectural documentation, sometimes as simple as a README file

summarizing what the purpose of each subdirectory, can facilitate readers’
understanding. However, programmers are often not rewarded for writing
documentations, intellectually or monetary-wise. Programmers at a large
company are paid for the code they write, not the documentations. Moreover,
architectural documentations often help readers from outside the team more than
within the team, so the reward of writing them is even less visible and certain. We
can dramatically lessen the burden of writing architectural documentation by
automatically synthesizing them from all kinds of program artifacts, e.g. API doc,
API type info, execution trace, test cases, usage by other programs, development
history etc. The architecture documentation can be a hybrid of natural text, code
snippets, or even diagrams.

b. A simplified version of the codebase would be useful. Readers can glean the
simplified version from version history and design doc. The design doc is
potentially non-existent, while development history is often in a
difficult-to-consume format (e.g. git history). Readers need a more digestible
“executive summary” of some form. We can synthesize a skeletal (hybrid) code
by filtering out if branches, inlining functions, removing boiler code, replacing
code with text (from API doc or even test case names!), most of those steps can
be guided by the development history (e.g. how functions were modulated can
reveal how functions relate to each other, how if branches are incrementally
added can tell us which cases are more common/apparent or thought to be more
important).

c. Example usage from sample user programs, tutorials and test cases is useful,
but they are more available for resource-rich or more popular
libraries/languages/codebases. We can synthesize example usage by collecting

inconsistent

without autocomplete feature of an IDE,

spread out all
over the place rather

Programmers at a large
company are paid fof r the code they write, not the documentations.

dramatically l

architectural documentation

design doc.

n test case names!

1

2

3

4

5

6

7

8

Page: 2
Number: 1 Author: mernst Subject: Highlight Date: 1/11/2016 8:41:04 PM
There exist tools that mandate conformance to a coding style. (An example for Java is checkstyle.) Why not just use one of these?

Number: 2 Author: mernst Subject: Highlight Date: 1/11/2016 8:41:49 PM
Is this is a realistic problem? Doesn't every ID have this feature?

Number: 3 Author: mernst Subject: Highlight Date: 1/11/2016 8:42:51 PM
Why is this true? Programmers organize programs into directories or folders, and each character folder contains multiple files.

I'm not sure this is a real problem. Or maybe you mean is a problem for novice programmers.

Number: 4 Author: mernst Subject: Highlight Date: 1/11/2016 8:44:42 PM
Is is true at every large company? Do you have evidence of this? Don't make broad generalizations that you cannot support. Even if your claim is generally true, such writing will make readers
suspicious and you will lose credibility.

Number: 5 Author: mernst Subject: Highlight Date: 1/11/2016 8:45:49 PM
What is your definition of this? It's hard to understand what the benefits are when the reader doesn't know what this is.

Number: 6 Author: mernst Subject: Highlight Date: 1/11/2016 8:45:14 PM
Drop superlatives. They don't help your case, especially when you have no evidence to back them up.

Number: 7 Author: mernst Subject: Highlight Date: 1/11/2016 8:48:00 PM
How does this help a reader understand the "simplified version"? How is this related to the executive summary that you mentioned later? Another term is "skeletal". If they are the same, use consistent
wording. If they are different, then explain the difference.

Number: 8 Author: mernst Subject: Highlight Date: 1/11/2016 8:48:18 PM
How can this be helpful? Not sure how a test case name helps to replace a call to a function.

usage by other programs and learn the pattern statistically. For example, for each
typed argument in an API doc, collect all instantiated variable names in real
programs, and then synthesize semantic examples that are embedded in real
world usage.

2. Make programmers’ code more consistent with general convention or reader's’ own code
a. Code review enforces a coding convention within an organization, but it is

manual/costly/non-exhaustive/non-uniform/subjective. We can enforce a coding
convention post-hoc! Use NLP/PL techniques, we can codify a naming
convention/programming idioms, and then post-process the code to make it more
organized and structured. For example, expand variable names to be verbose
and informative using NLP when useful.

b. Readers may run parts of the code, modify them to familiarize with the code.
Interactive programming languages often make this easier. We can take hints
from how readers interact with new code, transform code snippets on the fly (as
simple as changing variable names that are more in line with readers’ style and
understanding), highlight different parts of the code while hiding others as the
interactions reveal perplexity and resolutions in the reader’s mind.

3. Modern IDEs can better present code than just flatly, and we already see various helpful
meta-summarizes of code in IDEs, e.g. function hierarchy tree view, call stack, instant
API doc lookup. These tools often help some readers more than others. We can use
machine learning to learn what aids understanding and what fails, and then customize
the tools for readers.

1

Page: 3
Number: 1 Author: mernst Subject: Sticky Note Date: 1/11/2016 8:48:47 PM
Please see directions that instructed you to write 1 to 2 pages.

