
 Often, when hoping to make even a small change to libraries or similar large
software projects, it can be difficult to gain a robust understanding of the architecture,
and how bits of code are tied together. Documentation can help with this problem, but
many projects (particularly research driven projects) can lack significant documentation
to work from. Even for small changes, it can be hard to find what piece of code is the
correct one to modify (this is further complicated at times because of in-progress
refactoring, and dead code). Once the correct spot is located, though, the lack of
familiarity with the project, and overall understanding of its architecture can make it
difficult to understand the (potential) side effects of the change, or non-obvious
adjustments/call that need to be made with the addition. On top of this, there are often
corresponding changes that need to be made elsewhere. Although the change can often be
as simple as copy/paste in, or copy/paste with a small modification, but finding the
locations where this change is necessary can be difficult, and even require attempting to
compile or run the code, and seeing what errors result.

 There are a number of tools that exist to attempt to avoid this problem. First,
robust, up-to-date, and accurate documentation can allow developers to quickly
understand bits and pieces of the code, when reading through them. This can include
references to why things are done, which can assist in understanding how to make your
change. However, maintaining this documentation, and keeping it up to date is oftentimes
onerous, and different developers maintain different standards. Also, this documentation
is often meant primarily for people who already understand the project as a whole, or
even as a note for the developer who wrote it, for when they return to that bit of code. In
these cases, there can be terminology used, and assumptions made of understanding that
prevent casual outside developers from fully understanding this documentation. Higher-
level documentation, including code maps, and architecture diagrams can help with
understanding how system link together. These, however, are also hard to create and
maintain, and quickly get out of date. Automatic tooling that can generate both styles of
documentation can help, potentially, by attempting to understand the code, and its
architecture, and either annotating it, or allowing someone to inspect via the tool (build
into an IDE, for example). While these can miss bits of the ‘why’, these tools could assist
developers new to a project to understand overall structure, and pinpoint where to make
small changes. This could both assist people newly joining the project, and also people
who simply wish to make a small change to contribute.

 Another issue commonly found with people new to a software project, is a lack
of understanding of the overall coding practices. This can mean everything from whether
braces go after the statement or on a newline or either (and this may be different for
different statements) to preferences towards more complex one-line operations (list
comprehensions, etc.) versus more expanded coding style, as well as how they are
presented. This can also include aspects of inline/infile documentation, or even
organizational/architectural structure of the project. Some organizations have style-
guides, or follow ones from external groups (such as PEP), and these even extend down
to team level, at times. However, these are not always consistently followed, and
oftentimes a team-level one may be lacking, but a standard may be followed. Also
commonly the main standard will be followed, but a few exceptions are made with the

a robust u

t.

, ,
 Automatic tooling that can generate both styles of , q

documentation

d overall structure,

g p (),
 these are not always consistently followed,

y
t a few exceptions

n, o

1

2

3

4

5

6

7

8

Summary of Comments on response_hw1
Page: 1

Number: 1 Author: mernst Subject: Sticky Note Date: 1/11/2016 9:10:05 PM
Every document deserves a title and you should write your name to claim authorship as well.

If you can't think of a good title, then that means you don't understand the document.

Number: 2 Author: mernst Subject: Highlight Date: 1/11/2016 9:10:42 PM
What is a robust understanding? How is that different than other understandings? When is it necessary?

Number: 3 Author: mernst Subject: Highlight Date: 1/11/2016 9:13:48 PM
This paragraph feels a bit all over the place. What is the specific problem that you want to address? Trying to cover every problem related to making a change to a program is too ambitious; you'll end
up treating them all shallowly and readers won't get much of anything out of it.

I would get much more out of focusing on specific problems (rather than software maintenance which is 90% of all programming effort) and going into them in a bit more detail.

Number: 4 Author: mernst Subject: Highlight Date: 1/11/2016 9:15:22 PM
I believe that the topic of this paragraph is a proposal for automatically generating documentation. In the case, make it the first sentence, and focus the paragraph around it. I think you can cut much
of what is currently there.

Number: 5 Author: mernst Subject: Highlight Date: 1/11/2016 9:15:53 PM
Can you give a concrete example?

Number: 6 Author: mernst Subject: Highlight Date: 1/11/2016 9:21:04 PM
Old things you've mentioned up to this point in the paragraph seem like relatively uninteresting syntactic aspects of program structure to me. I think it's more interesting to know whether a project
encourages or discourages design patterns such as callbacks, observers, visitors, and more. Incorrect indentation or easier factoring's are not likely to be a huge obstacle, but if a programmer gets
wrong whether data should be stored in a global data structure or threaded through all procedure calls, then that can significantly degrade the architectural structure and can cause painful re-
factoring. There also issues like what components are supposed to communicate with other components.

I encourage you to think about these bigger lake level issues rather than merely about the low level or syntactic structure of the code.

Number: 7 Author: mernst Subject: Highlight Date: 1/11/2016 9:17:12 PM
Tools exist to check informants of code with coding styles such as PEP. Could you just run them?

Number: 8 Author: mernst Subject: Highlight Date: 1/11/2016 9:17:35 PM
Is this desirable? Should the team just adopt standard coding conventions rather than having its own idiosyncratic dialect?

team, but these are not documented anywhere. Much of the standards must be learned
from team members, or more commonly, simply through working and gaining familiarity
with the code. Documenting these can be onerous, and leading to the documents not
existing, or quickly becoming out of date and obsolete. Also, given that different
languages often have different standards, both inherent to the language, and because of
general practice, the number of documents and things that would need to be documented
can be barriers to this documentation existing/being accurate. This seems like a place
where an automated system could monitor/analyze code, and using some stats/machine
learning could build a rough understanding of certain coding standard choices
(particularly easy cases might be binary (/trinary) options such as brace positions, etc.)

g g ,
t would need to be documented 1

Page: 2
Number: 1 Author: mernst Subject: Highlight Date: 1/11/2016 9:22:12 PM
Most languages have coding conventions, and many organizations due to. So I'm not sure this is as big an obstacle as you make it out to be. However, it might be interesting to try to automatically
generate, from an English style guide, a checker that would indicate violations of that style guide.

