
Memory Safety Through
Runtime Analysis

Justin Samuel for CSE 504, Spring ‘10

Instructor: Ben Livshits

(A Few) Runtime Safety Approaches

Approach Year Summary

SFI 1994 Software Fault Isolation.

Bounds checking C 1995 Jones and Kelly, CRED.

StackGuard 1998 Canaries.

ASLR 2001 Address Space Layout Randomization (e.g. PAX).

Program
Shepherding

2002 Run through an interpreter and verify branch instructions.

PointGuard 2003 Pointers encrypted in memory and decrypted at time of use.

CFI 2005 Control-Flow Integrity.

DieHard 2005 Multiple, large heaps with different allocation.

DFI 2006 Data-Flow Integrity.

WIT 2008 Write Integrity Testing.

NaCL 2009 Native Client. Uses SFI. Performs CFI.

2010-04-26 Runtime Memory Safety - CSE 504 2

CFI: Control-Flow Integrity

• Ensure execution follows the control-flow graph
(CFG).
– Statically analyze binary to identify valid destinations

of all control transfers.
– Instrument code with:

• Unique IDs at destinations.

• Checking destination IDs before all instructions
that transfer control.

• Not concerned with read or write destinations.

2010-04-26 Runtime Memory Safety - CSE 504 3

DFI: Data-Flow Integrity

• Restrict reads based on instructions that wrote
the data.
– Statically analyze source to identify the instructions

that are allowed to write values that are read.
– Instrument code to:

• Maintain a table of the last instructions to write
memory locations.

• Check the last-write table on reads against
computed allowed write instructions.

• Not directly concerned with control flow.

2010-04-26 Runtime Memory Safety - CSE 504 4

Preventing memory error exploits
with WIT

Periklis Akritidis, Cristian Cada, Costin
Raiciu, Manuel Costa, Miguel Castro

Microsoft Research, Cambridge UK

Example Vulnerable Code

1: char cgiCommand[1024];
2: char cgiDir[1024];
3:
4: void ProcessCGIRequest(char* msg, int sz) {
5: int i=0;
6: while (i < sz) {
7: cgiCommand[i] = msg[i];
8: i++;
9: }
10:
11: ExecuteRequest(cgiDir, cgiCommand);
12: }

2010-04-26 Runtime Memory Safety - CSE 504 6

Data-modifying Commands

1: char cgiCommand[1024];
2: char cgiDir[1024];
3:
4: void ProcessCGIRequest(char* msg, int sz) {
5: int i=0;
6: while (i < sz) {
7: cgiCommand[i] = msg[i];
8: i++;
9: }
10:
11: ExecuteRequest(cgiDir, cgiCommand);
12: }

2010-04-26 Runtime Memory Safety - CSE 504 7

Line 7’s Modified Objects

1: char cgiCommand[1024];
2: char cgiDir[1024];
3:
4: void ProcessCGIRequest(char* msg, int sz) {
5: int i=0;
6: while (i < sz) {
7: cgiCommand[i] = msg[i];
8: i++;
9: }
10:
11: ExecuteRequest(cgiDir, cgiCommand);
12: }

2010-04-26 Runtime Memory Safety - CSE 504 8

WIT: Write Integrity Testing

• Approach:
1. Determine memory locations that individual

instructions should legitimately be able to write to.

2. Only allow a given instruction to write to those
locations.

• Memory errors to protect against:
– Buffer overflows and underflows

– Dangling pointers
– Double frees

2010-04-26 Runtime Memory Safety - CSE 504 9

Static Analysis

• Two stages:
1. Points-to analysis

2. Write safety analysis

• Goal: Create a color table.
– Give each unsafe object a different color.

– Give each write instruction the same color as the
objects it can write.

2010-04-26 Runtime Memory Safety - CSE 504 10

Static Step 1: Points-to Analysis

• Compute the set of objects that can be modified
by each program instruction.

• In the example:
– Set {i} for the instructions at lines 5 and 8

– Set {cgiCommand} for the instruction at line 7

2010-04-26 Runtime Memory Safety - CSE 504 11

1: char cgiCommand[1024];
2: char cgiDir[1024];
3:
4: void ProcessCGIRequest(char* msg, int sz) {
5: int i=0;
6: while (i < sz) {
7: cgiCommand[i] = msg[i];
8: i++;
9: }
10:
11: ExecuteRequest(cgiDir, cgiCommand);
12: }

Static Step 2: Write Safety Analysis

• Purpose: runtime efficiency.
• For all instructions and objects, determine

whether safe or unsafe.
– Safe instruction: cannot violate write integrity.

• No destination operand

• Operand is temporary, local, or global variable.
– Safe object: all instructions that can modify it are

safe.

2010-04-26 Runtime Memory Safety - CSE 504 12

Safe

1: char cgiCommand[1024];
2: char cgiDir[1024];
3:
4: void ProcessCGIRequest(char* msg, int sz) {
5: int i=0;
6: while (i < sz) {
7: cgiCommand[i] = msg[i];
8: i++;
9: }
10:
11: ExecuteRequest(cgiDir, cgiCommand);
12: }

2010-04-26 Runtime Memory Safety - CSE 504 13

Not Safe

1: char cgiCommand[1024];
2: char cgiDir[1024];
3:
4: void ProcessCGIRequest(char* msg, int sz) {
5: int i=0;
6: while (i < sz) {
7: cgiCommand[i] = msg[i];
8: i++;
9: }
10:
11: ExecuteRequest(cgiDir, cgiCommand);
12: }

2010-04-26 Runtime Memory Safety - CSE 504 14

Example Color Table

Color Instructions Objects

0 Lines 5, 8 msg, sz, i

3 Line 7 cgiCommand

4 cgiDir

• Record the color of each memory location.
• Color 0 is used for safe objects.

2010-04-26 Runtime Memory Safety - CSE 504 15

Function Colors

• Compute possible indirect function calls.
• Colors assigned to functions are disjoint from

those assigned to objects.
• Prevents:

– Unsafe instructions from overwriting code.
– Control transfers outside code regions.

2010-04-26 Runtime Memory Safety - CSE 504 16

Instrumentation

• Use information from static
analysis.

• Add instrumentation during
compilation.

2010-04-26 Runtime Memory Safety - CSE 504 17

• Insert guards.

• Maintain color table.

• Check writes.

• Check indirect calls.

Instrumentation

• Points-to analysis is
imprecise.
– False negatives possible

• Insert guards between
unsafe objects.

• Guard objects have color 0
(safe objects).

2010-04-26 Runtime Memory Safety - CSE 504 18

• Insert guards.

• Maintain color table.

• Check writes.

• Check indirect calls.

Instrumentation

cgiDir
[1024]

cgiCommand
[1024]

GUARD (8 bytes)

GUARD (8 bytes)

GUARD (8 bytes)

2010-04-26 Runtime Memory Safety - CSE 504 19

• Insert guards.

• Maintain color table.

• Check writes.

• Check indirect calls.

Instrumentation

• Different for the stack, heap,
and global data.

• Heap allocator’s header
used as a guard by setting
its color to 1.

2010-04-26 Runtime Memory Safety - CSE 504 20

• Insert guards.

• Maintain color table.

• Check writes.

• Check indirect calls.

Instrumentation

• Tricky guard case:
– Function arguments written by

unsafe instruction.
– Solution: Copy argument to

local variable, guard that, and
rewrite instructions to refer to
the copy.

2010-04-26 Runtime Memory Safety - CSE 504 21

• Insert guards.

• Maintain color table.

• Check writes.

• Check indirect calls.

Instrumentation

• 8-bit color for each 8-byte
memory slot
– Space overhead is 12.5%
– Pad generated code.

• Instrument function
prologues and epilogues to
set and reset color table
entries.

• Wrappers for allocation
functions (malloc, calloc,
free).

2010-04-26 Runtime Memory Safety - CSE 504 22

• Insert guards.

• Maintain color table.

• Check writes.

• Check indirect calls.

Instrumentation

• Only check writes by unsafe
instructions.

• Compare color of instruction
to destination operand.
– If they do not match, raise an

exception.

2010-04-26 Runtime Memory Safety - CSE 504 23

• Insert guards.

• Maintain color table.

• Check writes.

• Check indirect calls.

Instrumentation

• Lookup the color of the
target function.

• Compare with the color of
the indirect call instruction.
– If they do not match, raise an

exception.

• Zero last three bits of
function pointer value to
ensure 16-byte aligned,
which should normally be
the case.

2010-04-26 Runtime Memory Safety - CSE 504 24

• Insert guards.

• Maintain color table.

• Check writes.

• Check indirect calls.

Prevented Attacks

• WIT can prevent all attacks that violate write
integrity.
– Depends on precision of points-to analysis.

• If two objects have the same color, WIT may fail
to detect an attack.

• Sequential overflow always prevented even if
colors match.

• What about reads?

2010-04-26 Runtime Memory Safety - CSE 504 25

Number of Writable Objects

2010-04-26 Runtime Memory Safety - CSE 504 26

CPU Overhead

2010-04-26 Runtime Memory Safety - CSE 504 27

Memory Overhead

2010-04-26 Runtime Memory Safety - CSE 504 28

Testing with Vulnerabilities

• Successful against benchmark of 18 control-data attacks
that exploit buffer overflows.
• All but one are detected when guard object overwritten. The

other is detected when a corrupted pointer is used to overwrite a
return address (color 0).

• Tested with known vulnerabilities in real apps.
• All detected when buffer overflow hit a guard object at the end of

the buffer.
• SQL Server sprintf overflow of stack buffer (Slammer).
• Ghttpd vsprintf overflow of stack buffer.
• Nullhttpd heap buffer overflow causes heap management

data structures to be overwritten.
• Stunnel vsprintf format string overflow of stack buffer.
• Libpng stack buffer overflow.

2010-04-26 Runtime Memory Safety - CSE 504 29

Limitations

• Libraries
• WIT as just described doesn’t work for libraries.
• WIT for libraries assigns the same well-known color to

all unsafe objects allocated by libraries.
– Will WIT work without recompiled libraries?

2010-04-26 Runtime Memory Safety - CSE 504 30

DieHard: Probabilistic Memory
Safety for Unsafe Languages

Emery D. Berger and

Benjamin G. Zorn

Non-fatal Memory Errors

• Existing approaches either:
– Abort when memory errors detected.
– Continue anyways (!)

• How about detecting the memory error and
allowing the program to continue correctly?

2010-04-26 Runtime Memory Safety - CSE 504 32

DieHard in a Nutshell

• Randomize object locations in a large heap.
• Can operate in a replicated mode.

– Multiple replicas of the same application are run
simultaneously. Require agreement on output.

2010-04-26 Runtime Memory Safety - CSE 504 33

Randomized Object Locations

• Likely that buffer overflows end up overwriting
only empty space.

• Unlikely that a newly-freed object will soon be
overwritten by a subsequent allocation.

2010-04-26 Runtime Memory Safety - CSE 504 34

Replication

• Stand-alone DieHard cannot detect uninitialized
reads.

• Solution: execute several replicas
simultaneously.

2010-04-26 Runtime Memory Safety - CSE 504 35

Detecting Uninitialized Reads

1. Fill allocated object with random values.

2. Execute same program in multiple replicas.

3. Compare outputs.

2010-04-26 Runtime Memory Safety - CSE 504 36

Replica Communication

• DieHard uses pipes and shared memory to
communicate with replicas.

• Each replica receives stdin from and writes
stdout to DieHard.

• DieHard compares output from replicas.
• Support not implemented for programs that

modify filesystems or perform network I/O.
• How would you support non-deterministic

programs?

2010-04-26 Runtime Memory Safety - CSE 504 37

Avoiding Buffer Overflows

“…for our analysis, we model a buffer overflow as
a write to any location in the heap.”

2010-04-26 Runtime Memory Safety - CSE 504 38

Avoiding Dangling Pointers

“…the likelihood that the object’s contents are not
overwritten after A intervening allocations”

2010-04-26 Runtime Memory Safety - CSE 504 39

Runtime on Linux

2010-04-26 Runtime Memory Safety - CSE 504 40

Other Approaches

Rx: rollback to a checkpoint, re-execute in a modified environment.

2010-04-26 Runtime Memory Safety - CSE 504 41

Comparison
Approach Protections Limitations CPU Overhead

Memory-safe C
(CCured, Cyclone)

All memory errors. Source and runtime changes (e.g.
garbage collector).

High

Taint analysis Many memory errors. Accuracy vs. automation. 2x WIT

Bounds checking C All buffer overflows. Doesn’t work with all programs.
Protection granularity limited by
compile-time information.

Up to 12x WIT

StackGuard, et al. Specific targets (e.g.
return address).

Only defend against specific attacks. Low

CFI Control-flow. Data not protected. 15-45%

DFI Some out-of-bounds
reads and writes

No guards against imprecise
analysis.

104% over WIT
(so, 20-50%)

WIT Incorrect writes. Library incompatibility. 10-25%

DieHard Probabilistic memory
safety.

Large heap, only supports simple
programs.

12-109%.

Dhurjati’s improvements
on Jones and Kelly

Most out-of-bounds
reads and writes.

No protection of buffer overflow
inside structures or use of freed
pointers,

30-125%

Most numbers from WIT’s paper. Don’t take the numbers too seriously, they’ve been
adjusted to have about the same frame of reference. Protections and limitations also

require grains of salt.
2010-04-26 Runtime Memory Safety - CSE 504 42

Summary: WIT and DieHard

• WIT
– Static analysis + instrumentation to protect writes.
– Reasonably practical if everything compiled with WIT.

• DieHard
– Randomize heap object locations and run multiple

copies of the program.

– Replicas fairly impractical, just an interesting
academic idea. (My uneducated opinion, of course.)

2010-04-26 Runtime Memory Safety - CSE 504 43

References

• Akritidis, P. and Cadar, C. and Raiciu, C. and Costa, M. and Castro, M. Preventing memory error
exploits with WIT. (Oakland 2008)

• Abadi, M. and Budiu, M. and Erlingsson, U. and Ligatti, J. Control-flow integrity. (CCS 2005)
• Berger, E.D. and Zorn, B.G. DieHard: probabilistic memory safety for unsafe languages.

(SIGPLAN 2006)
• Castro, M. and Costa, M. and Harris, T. Securing software by enforcing data-flow integrity. (OSDI

2006)

2010-04-26 Runtime Memory Safety - CSE 504 44

