
04/17/10 1

Type Qualifiers and Security

• This presentation will discuss two papers that
use qualifiers for security purposes

• Qualifiers are used to extend the normal C type
system to provide more rigorous (and clever)
type checking, both statically and dynamically

• First paper: qualifiers for intelligent
instrumentation of runtime checks

• Second paper: qualifiers for tracking tainted
data flow

04/17/10 2

CCured: Type-Safe Retrofitting of
Legacy Code

George C. Necula, Scott McPeak & Westley Weimer

Presented by Jeff Johnson

04/17/10 3

The Problem Space

 As we all know...
 C is extremely flexible with types and data

representation
 Great for low level nitty gritty, but often causes

subtle bugs when manipulating pointers
 Array out of bounds access
 NULL dereferencing
 Accidental aliasing
 Bad casting
 Etc...

04/17/10 4

What Can We Do?

 Naïve approach: during runtime, hold extra
information with each pointer and perform
checks on all memory reads and writes

 For example, Purify
 But slow

– Usually lots of reads and writes to check

– Ignoring context of read or write

04/17/10 5

Runtime Checks Needed?

int *cat;
...
int dog = *cat;

int fish[5];
...
int *shark = fish + 10;
...
int squid = *shark;

cat is non-NULL

shark is non-NULL

Runtime checks can be done selectively based on usage

shark is in bounds

04/17/10 6

CCured Approach

 Key insight: Type safety can be verified statically for
a large portion of a C program

 The rest can be checked at runtime
 In other words, CCured will separate type checking

into two parts
 Static checks when possible
 Instrumentation for runtime checks only when

needed
 CCured will use extensions to the C type-system to

do so

04/17/10 7

Presentation Overview

 We will discuss the following
 CCured dialect and type system
 Runtime checks/operational semantics
 Dealing with legacy code – type inference
 Results and discussion
 Post-paper developments (it was published in 2002)

04/17/10 8

CCured Dialect (Simplified)

 Important to note:
 p ⊕ i → p + i (pointer arithmetic)
 !p → *p
 Pointer types: ref SAFE, ref SEQ, DYNAMIC

04/17/10 9

T ref SAFE

 Pointers used in a statically checkable safe way
 At runtime, either NULL or valid address

containing type T
 Aliases are either T ref SAFE or T ref SEQ

int *cat;
...
int dog = *cat;

int ref SAFE cat;
...
int dog = !cat;

04/17/10 10

T ref SEQ

 Pointers involved in pointer arithmetic
 At runtime, holds information about the memory

area (a sequence of type T) it points to
 Aliases are either T ref SAFE or T ref SEQ

int *fish; // array
int *shark;
shark = fish + 10;

int ref SEQ fish;
int ref SAFE shark;
shark =
 (int ref SAFE)fish ⊕ 10;

04/17/10 11

DYNAMIC

 Pointers involved in unsafe operations that are
not checkable at compile time

 At runtime, holds information about the memory
area it points to (or if it is actually an integer)

 Aliases are always DYNAMIC

int **wild;
int *crazy = (int*) wild;
int nuts = *crazy;

DYNAMIC wild;
DYNAMIC crazy = wild;
int nuts = !crazy;

04/17/10 12

Type System

Note that it seems that we could do
DYNAMIC <: int <: SEQ <: SAFE
But we cannot, because of operational semantics we'll see later

04/17/10 13

Runtime Model

 Need to do the following checks dynamically
 SAFE: not-NULL on reads/writes
 SEQ: not-NULL on reads/writes, within bounds on

reads/writes and casts to SAFE
 DYNAMIC: not-NULL and within bounds on reads/writes

 To do this, we will use the following representation
 SAFE, int: as normal integers
 SEQ, DYNAMIC: as <home, value>

− home holds information about the memory area the pointer refers
to and value refers to the pointer's value (usually an offset from
home)

04/17/10 14

04/17/10 15

Instrumenting Code (SAFE Reads)

int ref SAFE cat;
/* allocate space for cat */
int dog = !cat; // read

int ref SAFE cat; // cat = 0
/* allocate space for cat */ // cat = n
int dog;
if (cat != 0) // check null

dog = !cat; // dog = *n
else

// error – halt

Instrumentation

04/17/10 16

Runtime Casting Rules

 int n <: SEQ,DYNAMIC →n becomes <0, n> (i.e.
a NULL pointer)

 SEQ <: SAFE → <h, v> becomes h + v (plus a
bounds check)

 SEQ, DYNAMIC <: int → <h, v> becomes h + v
 SAFE <: int → no change in memory
 Note that casting from a pointer to int and back

creates a NULL pointer, disallowing

DYNAMIC <: int <: SEQ <: SAFE

04/17/10 17

Instrumenting Code (Casting)

int ref SEQ fish; // array
/* ...allocate space for fish */
int ref SAFE shark;
shark = (int ref SAFE)fish ⊕ 10;

int ref SEQ fish; // fish = <0,0>
/* ...allocate space for fish */ // fish = <h,n>
int ref SAFE shark; // shark = 0
if (0 <= n+10 < size(h)) // check bounds

shark = (int ref SAFE)fish ⊕ 10; // shark= h+n+10
else

// error – halt

Instrumentation

04/17/10 18

Type Inference

 No one wants to annotate legacy code to use
CCured pointer-types

 Instead, use a type inference algorithm to
maximize the number of SAFE, SEQ pointers
used and minimize the number of DYNAMICS

 Follows same inference work-flow we've been
seeing
 Constraint Generation
 Constraint Normalization
 Constraint Solving

04/17/10 19

Constraint Generation

• Generate variables for pointers in program

• Generate constraints based on pointer use

• Possible values: {SAFE, SEQ, DYNQ}

Example constraints (for qualifier variable q):

T ref q ⊕ n → q != SAFE

T1 ref q1 <: T2 ref q2 →
(q1=q2 ∨ (q1=SEQ ∧ q2=SAFE)) ∧
(q1=q2=DYNQ ∨ T1≈T2)

T ref q' ref q ∧ q = DYNQ → q' = DYNQ

04/17/10 20

Constraint Normalization/Solving

• Simplify constraints

• Solve using the following steps
– Propagate (q = DYNQ) to all qualifiers that are

references or aliases of q

– Set all unsolved qualifiers with (q != SAFE) to
SEQ and propagate to references and aliases
of q

– Set all other qualifiers to SAFE

– Lastly, do: q = DYNQ → T ref q = DYNAMIC

04/17/10 21

Inference Example: SAFE and SEQ
int *foo;
int *baz;
...
foo = baz + 10;

int ref Q1 foo;
int ref Q2 baz;
...
foo = (int ref Q1) baz 10;⊕

Q2 != SAFE
Q2 = Q1 OR (Q2 = SEQ AND Q1 = SAFE)
Q2 = Q1 = DYNQ OR int = int

Q2 != SAFE
Q2 = Q1 OR (Q2 = SEQ AND Q1 = SAFE)

Q2 = SEQ
Q1 = SAFE

T1 ref q1 <: T2 ref q2 →
(q1=q2 ∨ (q1=SEQ ∧ q2=SAFE)) ∧
(q1=q2=DYNQ ∨ T1≈T2)

T ref q ⊕ n → q != SAFE

04/17/10 22

Inference Example: DYNQ

int **wild;
int *crazy = (int*)wild;

int ref Q1 ref Q2 wild;
int ref Q3 crazy = (int ref Q3)wild;

Q2 = Q3 OR (Q2 = SEQ AND Q3 = SAFE)
Q2 = Q3 = DYNQ OR (int ref Q1) = int

Q2 = Q3 = DYNQ

int ref Q1 ref DYNQ wild;
int ref DYNQ crazy = (int ref DYNQ)wild;

DYNAMIC wild;
DYNAMIC crazy = wild;

T1 ref q1 <: T2 ref q2 →
(q1=q2 ∨ (q1=SEQ ∧ q2=SAFE)) ∧
(q1=q2=DYNQ ∨ T1≈T2)

04/17/10 23

Experimentation
Program LOC Description
compress 1,590 LZW data compression
go 29,315 Plays the board game Go
ijpeg 31,371 Compresses image files
li 7,761 Lisp interpreter
bh 2,053 n-body simulator
bisort 707 Sorting algorithm
em3d 557 Solves electromagnetism problem
health 725 Simulates Colombia's health care system
mst 617 Computes minimum spanning tree
perimeter 395 Computes perimeters of regions in images
power 763 Simulates power market prices
treeadd 385 Builds a binary tree
tsp 561 Approximates Traveling Salesman Problem

04/17/10 24

Source Changes

 To make using CCured possible, had to change the
source of some test programs slightly
 sizeof gives incorrect size when passed a type,

because of “fat” pointers. Fixed by passing an
expression (i.e. sizeof(int*) → sizeof(p))

 Moving locals to the heap (because of issues
involving saving stack references using address-of)

 Other changes that might be needed
 pointer cast to int then back to pointer: don't do it
 incompatibility with library functions: use wrapper functions

to convert “fat” pointers to normal representations and back

04/17/10 25

Results

04/17/10 26

Bugs Found

 compress and ijpeg each have one array
bounds violation

 go has eight bounds violations, and one use of
an uninitialized integer used for array indexing

 The paper lacks further discussion...

04/17/10 27

Conclusion

 CCured uses type qualifiers to track pointer
usage and optimize runtime checks for safe
memory access

 What else can we do with qualifiers and type
inference?

04/17/10 28

Detecting Format String
Vulnerabilities with Type Qualifiers

Umesh Shankar, Kunal Talwar, Jeffrey S. Foster
and David Wagner

Presented By Jeff Johnson

04/17/10 29

Problem Space and Approach

• Addressing the problem of format vulnerabilities

– e.g. printf(buf)

• Use type qualifiers to detect vulnerabilities statically

– Annotate small set of typed elements as tainted or untainted

– Infer taintedness for other elements throught the program

– Complain if tainted element can reach a format string function

– Similar to Perl, but Perl tracks taintedness during runtime

04/17/10 30

Example

Declare

tainted char *get_string_from_user();
void printf(untainted *char format, …);

Vulnerable Code

char *response =
get_string_from_user(); // infer tainted

...
printf(response);

Raise error at compile time!

04/17/10 31

Why Type Annotations?

• Familiar to programmers

• Easy way to understand error output

• Type theory is well understood

• Provide a sound basis for formal verification

04/17/10 32

Taintedness Type System

• tainted – types of values controllable by user

• untainted – types for other values

• Examples:

untainted int x; // integer untouched by user
tainted char *y; // pointer to a tainted char
char * untainted z;// untainted pointer to char
int a; // neither tainted nor untainted

04/17/10 33

Taintedness Type System (2)

Sub-typing Relation:

untainted T < tainted T

Sub-typing Rules:

Q1 <: Q2 T1 <: T2

Q1 T1 <: Q2 T2

Q1 <: Q2 T1 = T2

Q1 ptr(T1) <: Q1 ptr(T2)

Allows untainted data to become tainted, but not the reverse

04/17/10 34

Type Inference

• User introduces a small number of
annotations as “constraint seeds”

• Generate qualifier variables for each typed
element in the program

• Generate constraints based on variable usage

• Solve using sub-typing rules, find
inconsistencies

04/17/10 35

Example: Solving Constraints

tainted char *getenv(char *name); // seed
...
char * x = getenv(“FOO”);

getenv_ret_p char * getenv_ret
 getenv(getenv_arg0_p char * getenv_arg0 name);

where (getenv_ret_p = tainted)
...
x_p char * x_v x = getenv(“FOO”);

getenv_ret_p char * getenv_ret <: x_p char * x_v

getenv_ret_p = x_p = tainted, get_ret <: x_v

Generate qualifier variables

Generate constraints

Solve constraints

04/17/10 36

Example: Finding Unsafe Code
tainted char *getenv(const char *name);
int printf(untainted const char *fmt, ...);

char *s;
s = getenv(“FOO”);
printf(t);

tainted = getenv_ret_p = s_p
<: printf_arg0_p = untainted

DOES NOT TYPE CHECK
tainted <: untainted is not allowed

Generates constraints

04/17/10 37

Type System Extensions

• Polymorphism
– For functions, sometimes return value

taintedness is dependent on what is passed

– Solution: hand-write constraints using special
qualifier variables to have “conditional”
taintedness

• Variable Argument Functions
– Hand-write special qualifiers to apply to all extra

arguments

04/17/10 38

Other Extensions

• GUI integrated into GNU Emacs

• Taint Flow Graph

– Trace taintedness using a flow graph
tracking where taintedness comes from

– Present to the user for easy traceback

• Hotspots

– Present user with hottest quantifiers; those
involved in the largest number of taint
flow paths

04/17/10 39

Experimentation

• Metrics
– How many known vulnerabilities detected and

how many undetected?

– How many false positives?

– How easy to determine if a warning is a real
bug?

– How long did the automated analysis take

– How easy was preparing programs for
analysis?

04/17/10 40

Results

04/17/10 41

Discussion

• On first run, most programs produced a decent amount
of warnings

• Hot spot finder was helpful in finding correct spots for
qualifiers

• After inserting several qualifiers, only a few warnings
issued

• Timing (per program):

– 30 – 60 minutes to modify build process

– usually < 1, no greater than 10 minutes for automated
analysis to run

– tens of minutes for human analysis of results

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41

