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Where We're At

* We have been mostly focusing on

— Fixing vulnerabilities inherent to languages
— Finding/protecting against programmer follies

* Today we will look at security at a slightly
different angle

— Assume we have good programmers

— Concern ourself with the environment in which
the code Is run

— Focus on trust



Security in Web Apps
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Attack From the Client-Side

function submitRPC (s)

{
if (validate(s)) {
ajaxWrapper.submit (s) ;
box.display (“submitted!”);
} else { // bad input
box.display (“bad input”);

}

Trivial to circumvent
validation!

{

\
FireBug and/or Proxy »

function submitRPC (s)

//1f (validate(s)) {
ajaxWrapper.submit (s) ;
box.display (“submitted!”);

//} else { // bad input

// box.display (“bad input”);

//}




Attack From the Client-Side

Bottom Line:

NEVER trust ANYTHING Client gives you
NEVER store secrets at the Client



Web Apps: Current State of the Art

* Write two closely-coupled programs glued
together with AJAX

— Client-side: Javascript
— Server: Java, C#, eftc.

* Programmer reasons about security

— Who should do what computations?

 Remember: the client-side is so very responsive but
SO very untrusted

— What data goes where?
* This is difficult for many reasons



Alleviating Stress: Two Approaches

* Swift
* Make the app's security requirements explicit
* Use static checking to enforce
* Secure by design

* Ripley

* Replicate untrusted computation in a trusted
environment

* Compare results to detect misbehaving clients



Secure Web Applications via Automatic
Partitioning

S. Chong, J. Liu, A. C. Myers, X. QI, K. Vikram, L.
Zheng, X. Zheng



Swift

* Key Iinsight: reasoning about security Is difficult
because It Is:

* AcCross two entities
* Not explicit
* Not enforced or checked

* Swift says: Write one program using security
labels

* Enforce security with a static checker

* Compiler: split code between client and server based
on labels



Swift Overview

1) Write source with security labels

(in Jif programming language) \

2) Check labels,
convert to WeblL
(what can go on
client, server?)

Swift
source
code

3) Determine placement,

convert to JS and Java \
4) Runtime \

Compiler

Partitioner

Java
server
code

Javascript
client
code
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Write Source Using Jif

* Java-like syntax

* Plus labels for specifying read/write capabillities
between 'principals’

Confidentiality policy

.

Integrity policy —

Ny

int {bob -> alice} x;

String {bob <- alice} s;
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Jif (2)

Can strengthen/weaken policies as needed
(dangerous but necessary):

declassify
change confidentiality of an expression or a statement

endorse
changes integrity of an expression or a statement
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Jif In Swift

* Two principals

— “*” denotes server

— “client” denotes client
* *|s trusted

—In Jif terms: * actsfor client
* Bottom line

— client sees data no greater than {* -> client}
— client produces data no greater than {* <- client}
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Example: Labels

int secret;
int count;

vold guess (int 1)

{

1f (1 == secret) {
messageBox.display (“winner”);
} else {
count++;

messageBox.display (Y1looser”);
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Labeling Variables

int {*->*; *<—-*} secret;
int {*->client; *<-*} count;

vold guess (int 1)

{

1f (1 == secret) {
messageBox.display (“winner”);
} else {
count++;

messageBox.display (Y1looser”);
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Labeling Methods

int {*->*; *<—-*} secret;
int {*->client; *<-*} count;

volid guess{*->client} (int 1)
where authority (*)

{

1f (1 == secret) {
messageBox.display (“winner”);
} else {
count++;

messageBox.display (Y1looser”);
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Declassify

int {*->*; *<—-*} secret;
int {*->client; *<-*} count;

volid guess{*->client} (int 1)
where authority (*)

{
1f (1 == secret) {
declassify ({*->*} to {*->client})
messageBox.display (Ywinner”);
} else {

count++;
declassify ({*->*} to {*->client})

messageBox.display (“1looser”);
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Endorse

int {*->*; *<—-*} secret;
int {*->client; *<-*} count;

volid guess{*->client} (int 1)
where authority (*)

{
1f (1 == secret) {
declassify ({*->*} to {*->client})
messageBox.display ("“winner”);
} else {
endorse (i, {*<-client} to {*<-*})
count++;
declassify ({*->*} to {*->client})
messageBox.display (“1looser”);
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Next Step: WeblL

* Analyze source and verify the security specified
by labels

* Determine what data/computations can go
where by transforming to WeblIL

* Not committing to placement yet

* This step enforces and guarantees our
security model expressed in source
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Example: Source to WeblIL

int {*->*; *<-*} secret; g .
int {*->client; *<-*} count; Sh J,'nt secret;
o C?Sh int count;
void guess{*->client} (int i) . ..
where authority (*) void guess (int 1)
{
if (1 == secret) { {
declassify({*—>*}lto {*—>c}ient}) Sh if (i == secret) {
messageBox.display ("winner”); | | @ messageBox.display (“winner”) ;
} else { } else {
endorse (i, {*<-client} to {*<-*}) C?Sh count++;
count++; g A\ ”y .
declassify ({¥->*} to {*->client}) C messageBox.display (Ylooser”) ;
messageBox.display (“looser”); }
} }
}

C — Client
S — Server
? — Optional

h — high integrity
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Next Step: Partitioning

* Goal: Place code to optimize performance
without harming security

* Main cost Is network traffic
* Approach:

* Approximate weighted control flow graph over the
whole program

* Translate into an integer programming problem
* Reduce to maximum flow problem
* Solve
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Partitioning

STMT1

STMT?2

See the paper for more details...
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Result of Partitioning

blockl (9):
if (i == secret)
else goto block3;

goto block2;

block2 (C):
messageBox.display (“winner”);
goto block5;

block3 (SC):
count++;
goto block4;

block3 (SC):
count++;
goto block4;

block4 (C):
messageBox.display (“looser”);
goto blockb;

block5 (SC):
// end

SERVER

block5 (SC):
// end

CLIENT




Last Step: Translation

Located
WeblL code

Java
client code

Swift Java
server server

Java

Swift GWT

Javascript
client
code

client runtime —>| servlet
runtime | | library TP | framework

runtime code

Web Browser Web Server
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Exception
handler
closure

Client stack

BadCell handler

Execution block=5

Swift Runtime

current /
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Client

evt
[
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— current
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=
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Evaluation

Java target code JavaScript

Example Jif Server Client All Framework | App
Null program 6 lines | 0.7k tokens | 0.6k tokens 73 kB 70 kB 3 kB
Guess-a-Number 142 lines 12k tokens | 25k tokens | 267 kB 104 kB 162 kB
Shop 1094 lines | 139k tokens | 187k tokens | 1.21 MB 323 kB 889 kB
Poll 113 lines 8k tokens | 17k tokens | 242 kB 104 kB 137 kB
Secret Keeper 324 lines | 38k tokens | 38k tokens | 639 kB 332 kB 307 kB
Treasure Hunt 92 lines 11k tokens 11k tokens | 211 kB 99 kB 112 kB
Auction 502 lines | 46k tokens | 77k tokens | 503 kB 116 kB 387 kB
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Discussion

« The good

— Security policies are explicit and checked
— One program makes it easier to reason about security
— Minimizes network traffic

« The bad

— Labeling is verbose and slightly confusing (~20-30% of lines
are annotated)

— Difficult to retrofit legacy code (that may already be split)

— Still only as good as the programmer's ability to reason
about security
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Do Better?

* Can we ensure confidentiality and integrity
without creating extra work for the
programmer?

* Confidentiality — no (why not?)

— programmer must mark confidential information
as being such

* Integrity — yes
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Inteqgrity

* Integrity Is directly tied to the location of
computation

* Solution: move untrusted computation to trusted
location

— Move client-side computation to server
* But then we loose performance...

— Better: replicate client-side computations on
server, compare results
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Ripley: Automatically Securing Web 2.0
Applications Through Replicated
Execution

K. Vikram, A. Prateek, B. Livshits
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Ripley Execution Model

CLIENT

SERVER

Client Events (Clicks, etc.)

Y

COMPUTATION
(Generate RPC)

Send RPC to Server

EVENTS N
Replay Events
COMPUTATION
(Generate RPC)
RPC N '
Compare Results
DOESN'T
MATCHES MATCH

Pass to Server




What Ripley Does and Doesn't Do

* Ripley ensures integrity of Client-run code

* Protects against any attacks involved in
manipulating client-side code/state that results
In malformed RPCs

— Remember example from before

* Not for protecting against malformed input that
IS accepted by the client and server code

— Ripley protects the developer-intended protection
for the application
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Implementation Workflow

Client (C) .NET IL

INSTRUMENT to
capture events

Volta Program

IL to JS

Server (S) .NET IL

ADD Ripley layer
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Writing one program (similar to Jif)

class C1 {

volid foo ()
volid bar ()

}
)R
% """‘-b .NET
bytecode

Volta

{...
{..

[RunAt (“server”) ]

class C2 {
volid baz ()
volid faz ()

{...
{...

}
}

JS



Volta Advantages

Write one program

Glue together with RPCs

No funny JS (e.g. innerHTML editing)
Produces fast Client mirror (C) in .NET IL
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C' Instrumentation

* Intercept primitive and custom events via
bytecode rewriting

 Transfer events to server

— Batch: Queue events, send packet-sized set

— Flush queue when client generates an RPC call

Client (C') JS

Event { type, DOM object id, other info } _

RPC
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Adding Ripley Checker to S

EVENTS q RPC _
RPC -
> Rlpley P Response
Response
-
EVENTSJ RPC lResponse

Client Mirror (C)

Server (S)
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Replicating C' execution at C

* Run C as Jit-ed .NET IR

* Use lightweight browser emulator

— headless

— no rendering or layout computation

— simple DOM manipulation interface

— Each DOM node has unique id for event replay
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Evaluation
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Hotmall
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Extras and Optimizations

* O-latency RPCs
* MAC-ing RPCs
* Dependency analysis
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Discussion and Conclusion
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