Integrity and Confidentiality in Web Applications

Jeff Johnson

Where We're At

* We have been mostly focusing on

— Fixing vulnerabilities inherent to languages
— Finding/protecting against programmer follies

* Today we will look at security at a slightly
different angle

— Assume we have good programmers

— Concern ourself with the environment in which
the code Is run

— Focus on trust

Security in Web Apps

‘c N

lient

Fast Response
Untrusted

INTERNET
< =

Exposed to User
\C /

/SE].“VEI‘

Slow Response
Trusted

Secret

\

\

/

Attack From the Client-Side

function submitRPC (s)

{
if (validate(s)) {
ajaxWrapper.submit (s) ;
box.display (“submitted!”);
} else { // bad input
box.display (“bad input”);

}

Trivial to circumvent
validation!

{

\
FireBug and/or Proxy »

function submitRPC (s)

//1f (validate(s)) {
ajaxWrapper.submit (s) ;
box.display (“submitted!”);

//} else { // bad input

// box.display (“bad input”);

//}

Attack From the Client-Side

Bottom Line:

NEVER trust ANYTHING Client gives you
NEVER store secrets at the Client

Web Apps: Current State of the Art

* Write two closely-coupled programs glued
together with AJAX

— Client-side: Javascript
— Server: Java, C#, eftc.

* Programmer reasons about security

— Who should do what computations?

 Remember: the client-side is so very responsive but
SO very untrusted

— What data goes where?
* This is difficult for many reasons

Alleviating Stress: Two Approaches

* Swift
* Make the app's security requirements explicit
* Use static checking to enforce
* Secure by design

* Ripley

* Replicate untrusted computation in a trusted
environment

* Compare results to detect misbehaving clients

Secure Web Applications via Automatic
Partitioning

S. Chong, J. Liu, A. C. Myers, X. QI, K. Vikram, L.
Zheng, X. Zheng

Swift

* Key Iinsight: reasoning about security Is difficult
because It Is:

* AcCross two entities
* Not explicit
* Not enforced or checked

* Swift says: Write one program using security
labels

* Enforce security with a static checker

* Compiler: split code between client and server based
on labels

Swift Overview

1) Write source with security labels

(in Jif programming language) \

2) Check labels,
convert to WeblL
(what can go on
client, server?)

Swift
source
code

3) Determine placement,

convert to JS and Java \
4) Runtime \

Compiler

Partitioner

Java
server
code

Javascript
client
code

10

Write Source Using Jif

* Java-like syntax

* Plus labels for specifying read/write capabillities
between 'principals’

Confidentiality policy

.

Integrity policy —

Ny

int {bob -> alice} x;

String {bob <- alice} s;

11

Jif (2)

Can strengthen/weaken policies as needed
(dangerous but necessary):

declassify
change confidentiality of an expression or a statement

endorse
changes integrity of an expression or a statement

12

Jif In Swift

* Two principals

— “*” denotes server

— “client” denotes client
* *|s trusted

—In Jif terms: * actsfor client
* Bottom line

— client sees data no greater than {* -> client}
— client produces data no greater than {* <- client}

13

Example: Labels

int secret;
int count;

vold guess (int 1)

{

1f (1 == secret) {
messageBox.display (“winner”);
} else {
count++;

messageBox.display (Y1looser”);

14

Labeling Variables

int {*->*; *<—-*} secret;
int {*->client; *<-*} count;

vold guess (int 1)

{

1f (1 == secret) {
messageBox.display (“winner”);
} else {
count++;

messageBox.display (Y1looser”);

15

Labeling Methods

int {*->*; *<—-*} secret;
int {*->client; *<-*} count;

volid guess{*->client} (int 1)
where authority (*)

{

1f (1 == secret) {
messageBox.display (“winner”);
} else {
count++;

messageBox.display (Y1looser”);

16

Declassify

int {*->*; *<—-*} secret;
int {*->client; *<-*} count;

volid guess{*->client} (int 1)
where authority (*)

{
1f (1 == secret) {
declassify ({*->*} to {*->client})
messageBox.display (Ywinner”);
} else {

count++;
declassify ({*->*} to {*->client})

messageBox.display (“1looser”);

17

Endorse

int {*->*; *<—-*} secret;
int {*->client; *<-*} count;

volid guess{*->client} (int 1)
where authority (*)

{
1f (1 == secret) {
declassify ({*->*} to {*->client})
messageBox.display ("“winner”);
} else {
endorse (i, {*<-client} to {*<-*})
count++;
declassify ({*->*} to {*->client})
messageBox.display (“1looser”);

18

Next Step: WeblL

* Analyze source and verify the security specified
by labels

* Determine what data/computations can go
where by transforming to WeblIL

* Not committing to placement yet

* This step enforces and guarantees our
security model expressed in source

19

Example: Source to WeblIL

int {*->*; *<-*} secret; g .
int {*->client; *<-*} count; Sh J,'nt secret;
o C?Sh int count;
void guess{*->client} (int i) . ..
where authority (*) void guess (int 1)
{
if (1 == secret) { {
declassify({*—>*}lto {*—>c}ient}) Sh if (i == secret) {
messageBox.display ("winner”); | | @ messageBox.display (“winner”) ;
} else { } else {
endorse (i, {*<-client} to {*<-*}) C?Sh count++;
count++; g A\ ”y .
declassify ({¥->*} to {*->client}) C messageBox.display (Ylooser”) ;
messageBox.display (“looser”); }
} }
}

C — Client
S — Server
? — Optional

h — high integrity

20

Next Step: Partitioning

* Goal: Place code to optimize performance
without harming security

* Main cost Is network traffic
* Approach:

* Approximate weighted control flow graph over the
whole program

* Translate into an integer programming problem
* Reduce to maximum flow problem
* Solve

21

Partitioning

STMT1

STMT?2

See the paper for more details...

22

Result of Partitioning

blockl (9):
if (i == secret)
else goto block3;

goto block2;

block2 (C):
messageBox.display (“winner”);
goto block5;

block3 (SC):
count++;
goto block4;

block3 (SC):
count++;
goto block4;

block4 (C):
messageBox.display (“looser”);
goto blockb;

block5 (SC):
// end

SERVER

block5 (SC):
// end

CLIENT

Last Step: Translation

Located
WeblL code

Java
client code

Swift Java
server server

Java

Swift GWT

Javascript
client
code

client runtime —>| servlet
runtime | | library TP | framework

runtime code

Web Browser Web Server

24

Exception
handler
closure

Client stack

BadCell handler

Execution block=5

Swift Runtime

current /

activation record

Program point 1 [}

Program point 2 |}

>

TreasureHunt.hit activation record

-

Client

evt
[
J
points

Grid.getTreasure activation record

-

Client

X

y

contents

Server O\ Server stack
BadCell handler ,
Exception
Execution block=5 | handler
closure
<€ i
J<\ Execution block=3 | Return
~— o closure
Server)
— current
activation record
=

25

Evaluation

Java target code JavaScript

Example Jif Server Client All Framework | App
Null program 6 lines | 0.7k tokens | 0.6k tokens 73 kB 70 kB 3 kB
Guess-a-Number 142 lines 12k tokens | 25k tokens | 267 kB 104 kB 162 kB
Shop 1094 lines | 139k tokens | 187k tokens | 1.21 MB 323 kB 889 kB
Poll 113 lines 8k tokens | 17k tokens | 242 kB 104 kB 137 kB
Secret Keeper 324 lines | 38k tokens | 38k tokens | 639 kB 332 kB 307 kB
Treasure Hunt 92 lines 11k tokens 11k tokens | 211 kB 99 kB 112 kB
Auction 502 lines | 46k tokens | 77k tokens | 503 kB 116 kB 387 kB

26

Discussion

« The good

— Security policies are explicit and checked
— One program makes it easier to reason about security
— Minimizes network traffic

« The bad

— Labeling is verbose and slightly confusing (~20-30% of lines
are annotated)

— Difficult to retrofit legacy code (that may already be split)

— Still only as good as the programmer's ability to reason
about security

27

Do Better?

* Can we ensure confidentiality and integrity
without creating extra work for the
programmer?

* Confidentiality — no (why not?)

— programmer must mark confidential information
as being such

* Integrity — yes

28

Inteqgrity

* Integrity Is directly tied to the location of
computation

* Solution: move untrusted computation to trusted
location

— Move client-side computation to server
* But then we loose performance...

— Better: replicate client-side computations on
server, compare results

29

Ripley: Automatically Securing Web 2.0
Applications Through Replicated
Execution

K. Vikram, A. Prateek, B. Livshits

30

Ripley Execution Model

CLIENT

SERVER

Client Events (Clicks, etc.)

Y

COMPUTATION
(Generate RPC)

Send RPC to Server

EVENTS N
Replay Events
COMPUTATION
(Generate RPC)
RPC N '
Compare Results
DOESN'T
MATCHES MATCH

Pass to Server

What Ripley Does and Doesn't Do

* Ripley ensures integrity of Client-run code

* Protects against any attacks involved in
manipulating client-side code/state that results
In malformed RPCs

— Remember example from before

* Not for protecting against malformed input that
IS accepted by the client and server code

— Ripley protects the developer-intended protection
for the application

32

Implementation Workflow

Client (C) .NET IL

INSTRUMENT to
capture events

Volta Program

IL to JS

Server (S) .NET IL

ADD Ripley layer

33

Writing one program (similar to Jif)

class C1 {

volid foo ()
volid bar ()

}
)R
% """‘-b .NET
bytecode

Volta

{...
{..

[RunAt (“server”)]

class C2 {
volid baz ()
volid faz ()

{...
{...

}
}

JS

Volta Advantages

Write one program

Glue together with RPCs

No funny JS (e.g. innerHTML editing)
Produces fast Client mirror (C) in .NET IL

35

C' Instrumentation

* Intercept primitive and custom events via
bytecode rewriting

 Transfer events to server

— Batch: Queue events, send packet-sized set

— Flush queue when client generates an RPC call

Client (C') JS

Event { type, DOM object id, other info } _

RPC

36

Adding Ripley Checker to S

EVENTS q RPC _
RPC -
> Rlpley P Response
Response
-
EVENTSJ RPC lResponse

Client Mirror (C)

Server (S)

37

Replicating C' execution at C

* Run C as Jit-ed .NET IR

* Use lightweight browser emulator

— headless

— no rendering or layout computation

— simple DOM manipulation interface

— Each DOM node has unique id for event replay

38

Evaluation

39

Hotmall

40

Extras and Optimizations

* O-latency RPCs
* MAC-ing RPCs
* Dependency analysis

41

Discussion and Conclusion

42

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42

