
Symbolic Execution
Kevin Wallace, CSE504

2010-04-28

1



Problem

• Attacker-facing code must be written to 
guard against all possible inputs

• There are many execution paths; not a 
single one should lead to a vulnerability

• Current techniques are helpful, but have 
weaknesses

2



Symbolic Execution

• Insight:  code can generate its own test cases

• Run program on ‘symbolic’ input

• When execution path diverges, fork, adding 
constraints on symbolic values

• When we terminate (or crash), use a 
constraint solver to generate concrete input

3



Advantages

• Tests many code paths

• Generates concrete attacks

• Zero false positives

4



Fuzzing

• Idea:  randomly apply mutations to well-
formed inputs, test for crashes or other 
unexpected behavior

• Problem:  usually, mutations have very little 
guidance, providing poor coverage

• if(x == 10) bug(); -- fuzzing has a 1 in 232 
chance of triggering a bug

5



Today

• EXE

• Fast - uses a custom constraint-to-SAT 
converter (STP)

• Whitebox fuzz testing (SAGE)

• Targeted execution - focuses search 
around a user-provided execution path

6



EXE: Automatically 
Generating Inputs of Death

7



Using EXE

• Mark which regions of memory hold 
symbolic data

• Instrument code with exe-cc source-to-
source translator

• Compile instrumented code with gcc, run

8



9

1 : #include <assert.h>
2 : int main(void) {
3 : unsigned i, t, a[4] = { 1, 3, 5, 2 };
4 : make symbolic(&i);
5 : if(i >= 4)
6 : exit(0);
7 : // cast + symbolic offset + symbolic mutation
8 : char *p = (char *)a + i * 4;
9 : *p = *p − 1; // Just modifies one byte!
10:
11: // ERROR: EXE catches potential overflow i=2
12: t = a[*p];
13: // At this point i != 2.
14:
15: // ERROR: EXE catches div by 0 when i = 0.
16: t = t / a[i];
17: // At this point: i != 0 && i != 2.
18:
19: // EXE determines that neither assert fires.
20: if(t == 2)
21: assert(i == 1);
22: else
23: assert(i == 3);
24: }

Figure 1: A contrived, but complete C program (simple.c) that
generates five test cases when run under EXE, two of which
trigger errors (a memory overflow at line 12 and a division by
zero at line 16). This example is used heavily throughout the
paper. We assume it runs on a 32-bit little-endian machine.

% exe−cc simple.c
% ./a.out
% ls exe−last

test1.forks test2.out test3.forks test4.out
test1.out test2.ptr.err test3.out test5.forks
test2.forks test3.div.err test4.forks test5.out

% cat exe−last/test3.div.err
ERROR: simple.c:16 Division/modulo by zero!

% cat exe−last/test3.out
# concrete byte values:
0 # i[0]
0 # i[1]
0 # i[2]
0 # i[3]

% cat exe−last/test3.forks
# take these choices to follow path
0 # false branch (line 5)
0 # false (implicit: pointer overflow check on line 9)
1 # true (implicit: div−by−0 check on line 16)

% cat exe−last/test2.out
# concrete byte values:
2 # i[0]
0 # i[1]
0 # i[2]
0 # i[3]

Figure 2: Transcript of compiling and running the C program
shown in Figure 1.

not get confused by this (dubious) cast, nor the subsequent
type-violating modification of a low-order byte at line 9.

Second, exe-cc inserts code to fork program execution
when it reaches a symbolic branch point, so that it can ex-
plore each possibility. Consider the if-statement at line 5,
if(i >= 4). Since i is symbolic, so is this expression. Thus,
EXE forks execution (using the UNIX fork() system call)
and on the true path asserts that i ≥ 4 is true, and on the
false path that it is not. Each time it adds a branch con-
straint, EXE queries STP to check that there exists at least
one solution for the current path’s constraints. If not, the
path is impossible and EXE stops executing it. In our ex-
ample, both branches are possible, so EXE explores both
(though the true path exits immediately at line 6).

Third, exe-cc inserts code that calls to check if a symbolic
expression could have any possible value that could cause ei-
ther (1) a null or out-of-bounds memory reference or (2) a
division or modulo by zero. If so, EXE forks execution and
(1) on the true path asserts that the condition does occur,
emits a test case, and terminates; (2) on the false path as-
serts that the condition does not occur and continues execu-
tion (to find more bugs). Extending EXE to support other
checks is easy. If EXE has the entire set of constraints on
such expressions and STP can solve them, then EXE detects
if any input exists on that path that causes the error. Sim-
ilarly, if the check passes, then no input exists that causes
the error on that path — i.e., the path has been verified as
safe under all possible input values.

These checks find two errors in our example. First, the
symbolic index *p in the expression a[*p] (line 12) can cause
an out-of-bounds error because *p can equal 4: the pointer

p was computed using i with the constraint 0 ≤ i < 4 (line
8). Thus, i = 2 is legal, which means p can point to the low-
order byte of a[2] (recall that each element of a has four
bytes). The value of this byte is 4 after the subtraction at
line 9. Since a[4] references an illegal location one past the
end of a, EXE forks execution and on one path asserts that
i = 2 and emits an error (test2.ptr.err) and a test case
(test2.out), and on the other that i $= 2 and continues.

Second, the symbolic expression t / a[i] (line 16) can
generate a division by zero, which EXE detects by tracking
and solving the constraints that (1) i can equal 0, 1, or 3
and (2) a[0] can equal 0 after the decrement at line 9. EXE
again forks execution, emits an error (test3.div.err) and
a test case (test3.out) and exits. The other path adds the
constraint that i $= 0 and continues.

Note, EXE automatically turns a programmer assert(e)
on a symbolic expression e into a universal check of e sim-
ply because it tries to exhaust both paths of if-statements.
If EXE determines that e can be false, it will go down the
assertion’s false path, hitting its error handling code. Fur-
ther, if STP cannot find any such value, none exists on this
path. In the example, EXE explores both branches at line
20, and proves that no input value exists that can cause
either assert (line 21 and line 23) to fail. We leave work-
ing through this logic as an exercise for the more energetic
reader. Even a cursory attempt should show the trickiness
of manual reasoning about all-paths and all-values for even
trivial code fragments. (We spent more time than we would
like to admit puzzling over our own hand-crafted example
and eventually gave up, resorting to using EXE to double-
check our oft-wrong reasoning.)

1 : #include <assert.h>
2 : int main(void) {
3 : unsigned i, t, a[4] = { 1, 3, 5, 2 };
4 : make symbolic(&i);
5 : if(i >= 4)
6 : exit(0);
7 : // cast + symbolic offset + symbolic mutation
8 : char *p = (char *)a + i * 4;
9 : *p = *p − 1; // Just modifies one byte!
10:
11: // ERROR: EXE catches potential overflow i=2
12: t = a[*p];
13: // At this point i != 2.
14:
15: // ERROR: EXE catches div by 0 when i = 0.
16: t = t / a[i];
17: // At this point: i != 0 && i != 2.
18:
19: // EXE determines that neither assert fires.
20: if(t == 2)
21: assert(i == 1);
22: else
23: assert(i == 3);
24: }

Mark i as 
symbolic



10

1 : #include <assert.h>
2 : int main(void) {
3 : unsigned i, t, a[4] = { 1, 3, 5, 2 };
4 : make symbolic(&i);
5 : if(i >= 4)
6 : exit(0);
7 : // cast + symbolic offset + symbolic mutation
8 : char *p = (char *)a + i * 4;
9 : *p = *p − 1; // Just modifies one byte!
10:
11: // ERROR: EXE catches potential overflow i=2
12: t = a[*p];
13: // At this point i != 2.
14:
15: // ERROR: EXE catches div by 0 when i = 0.
16: t = t / a[i];
17: // At this point: i != 0 && i != 2.
18:
19: // EXE determines that neither assert fires.
20: if(t == 2)
21: assert(i == 1);
22: else
23: assert(i == 3);
24: }

Figure 1: A contrived, but complete C program (simple.c) that
generates five test cases when run under EXE, two of which
trigger errors (a memory overflow at line 12 and a division by
zero at line 16). This example is used heavily throughout the
paper. We assume it runs on a 32-bit little-endian machine.

% exe−cc simple.c
% ./a.out
% ls exe−last

test1.forks test2.out test3.forks test4.out
test1.out test2.ptr.err test3.out test5.forks
test2.forks test3.div.err test4.forks test5.out

% cat exe−last/test3.div.err
ERROR: simple.c:16 Division/modulo by zero!

% cat exe−last/test3.out
# concrete byte values:
0 # i[0]
0 # i[1]
0 # i[2]
0 # i[3]

% cat exe−last/test3.forks
# take these choices to follow path
0 # false branch (line 5)
0 # false (implicit: pointer overflow check on line 9)
1 # true (implicit: div−by−0 check on line 16)

% cat exe−last/test2.out
# concrete byte values:
2 # i[0]
0 # i[1]
0 # i[2]
0 # i[3]

Figure 2: Transcript of compiling and running the C program
shown in Figure 1.

not get confused by this (dubious) cast, nor the subsequent
type-violating modification of a low-order byte at line 9.

Second, exe-cc inserts code to fork program execution
when it reaches a symbolic branch point, so that it can ex-
plore each possibility. Consider the if-statement at line 5,
if(i >= 4). Since i is symbolic, so is this expression. Thus,
EXE forks execution (using the UNIX fork() system call)
and on the true path asserts that i ≥ 4 is true, and on the
false path that it is not. Each time it adds a branch con-
straint, EXE queries STP to check that there exists at least
one solution for the current path’s constraints. If not, the
path is impossible and EXE stops executing it. In our ex-
ample, both branches are possible, so EXE explores both
(though the true path exits immediately at line 6).

Third, exe-cc inserts code that calls to check if a symbolic
expression could have any possible value that could cause ei-
ther (1) a null or out-of-bounds memory reference or (2) a
division or modulo by zero. If so, EXE forks execution and
(1) on the true path asserts that the condition does occur,
emits a test case, and terminates; (2) on the false path as-
serts that the condition does not occur and continues execu-
tion (to find more bugs). Extending EXE to support other
checks is easy. If EXE has the entire set of constraints on
such expressions and STP can solve them, then EXE detects
if any input exists on that path that causes the error. Sim-
ilarly, if the check passes, then no input exists that causes
the error on that path — i.e., the path has been verified as
safe under all possible input values.

These checks find two errors in our example. First, the
symbolic index *p in the expression a[*p] (line 12) can cause
an out-of-bounds error because *p can equal 4: the pointer

p was computed using i with the constraint 0 ≤ i < 4 (line
8). Thus, i = 2 is legal, which means p can point to the low-
order byte of a[2] (recall that each element of a has four
bytes). The value of this byte is 4 after the subtraction at
line 9. Since a[4] references an illegal location one past the
end of a, EXE forks execution and on one path asserts that
i = 2 and emits an error (test2.ptr.err) and a test case
(test2.out), and on the other that i $= 2 and continues.

Second, the symbolic expression t / a[i] (line 16) can
generate a division by zero, which EXE detects by tracking
and solving the constraints that (1) i can equal 0, 1, or 3
and (2) a[0] can equal 0 after the decrement at line 9. EXE
again forks execution, emits an error (test3.div.err) and
a test case (test3.out) and exits. The other path adds the
constraint that i $= 0 and continues.

Note, EXE automatically turns a programmer assert(e)
on a symbolic expression e into a universal check of e sim-
ply because it tries to exhaust both paths of if-statements.
If EXE determines that e can be false, it will go down the
assertion’s false path, hitting its error handling code. Fur-
ther, if STP cannot find any such value, none exists on this
path. In the example, EXE explores both branches at line
20, and proves that no input value exists that can cause
either assert (line 21 and line 23) to fail. We leave work-
ing through this logic as an exercise for the more energetic
reader. Even a cursory attempt should show the trickiness
of manual reasoning about all-paths and all-values for even
trivial code fragments. (We spent more time than we would
like to admit puzzling over our own hand-crafted example
and eventually gave up, resorting to using EXE to double-
check our oft-wrong reasoning.)

1 : #include <assert.h>
2 : int main(void) {
3 : unsigned i, t, a[4] = { 1, 3, 5, 2 };
4 : make symbolic(&i);
5 : if(i >= 4)
6 : exit(0);
7 : // cast + symbolic offset + symbolic mutation
8 : char *p = (char *)a + i * 4;
9 : *p = *p − 1; // Just modifies one byte!
10:
11: // ERROR: EXE catches potential overflow i=2
12: t = a[*p];
13: // At this point i != 2.
14:
15: // ERROR: EXE catches div by 0 when i = 0.
16: t = t / a[i];
17: // At this point: i != 0 && i != 2.
18:
19: // EXE determines that neither assert fires.
20: if(t == 2)
21: assert(i == 1);
22: else
23: assert(i == 3);
24: }

Fork, add 
constraints

Constraint:
i >= 4

Constraint:
i < 4

exit(0) ...



11

1 : #include <assert.h>
2 : int main(void) {
3 : unsigned i, t, a[4] = { 1, 3, 5, 2 };
4 : make symbolic(&i);
5 : if(i >= 4)
6 : exit(0);
7 : // cast + symbolic offset + symbolic mutation
8 : char *p = (char *)a + i * 4;
9 : *p = *p − 1; // Just modifies one byte!
10:
11: // ERROR: EXE catches potential overflow i=2
12: t = a[*p];
13: // At this point i != 2.
14:
15: // ERROR: EXE catches div by 0 when i = 0.
16: t = t / a[i];
17: // At this point: i != 0 && i != 2.
18:
19: // EXE determines that neither assert fires.
20: if(t == 2)
21: assert(i == 1);
22: else
23: assert(i == 3);
24: }

Figure 1: A contrived, but complete C program (simple.c) that
generates five test cases when run under EXE, two of which
trigger errors (a memory overflow at line 12 and a division by
zero at line 16). This example is used heavily throughout the
paper. We assume it runs on a 32-bit little-endian machine.

% exe−cc simple.c
% ./a.out
% ls exe−last

test1.forks test2.out test3.forks test4.out
test1.out test2.ptr.err test3.out test5.forks
test2.forks test3.div.err test4.forks test5.out

% cat exe−last/test3.div.err
ERROR: simple.c:16 Division/modulo by zero!

% cat exe−last/test3.out
# concrete byte values:
0 # i[0]
0 # i[1]
0 # i[2]
0 # i[3]

% cat exe−last/test3.forks
# take these choices to follow path
0 # false branch (line 5)
0 # false (implicit: pointer overflow check on line 9)
1 # true (implicit: div−by−0 check on line 16)

% cat exe−last/test2.out
# concrete byte values:
2 # i[0]
0 # i[1]
0 # i[2]
0 # i[3]

Figure 2: Transcript of compiling and running the C program
shown in Figure 1.

not get confused by this (dubious) cast, nor the subsequent
type-violating modification of a low-order byte at line 9.

Second, exe-cc inserts code to fork program execution
when it reaches a symbolic branch point, so that it can ex-
plore each possibility. Consider the if-statement at line 5,
if(i >= 4). Since i is symbolic, so is this expression. Thus,
EXE forks execution (using the UNIX fork() system call)
and on the true path asserts that i ≥ 4 is true, and on the
false path that it is not. Each time it adds a branch con-
straint, EXE queries STP to check that there exists at least
one solution for the current path’s constraints. If not, the
path is impossible and EXE stops executing it. In our ex-
ample, both branches are possible, so EXE explores both
(though the true path exits immediately at line 6).

Third, exe-cc inserts code that calls to check if a symbolic
expression could have any possible value that could cause ei-
ther (1) a null or out-of-bounds memory reference or (2) a
division or modulo by zero. If so, EXE forks execution and
(1) on the true path asserts that the condition does occur,
emits a test case, and terminates; (2) on the false path as-
serts that the condition does not occur and continues execu-
tion (to find more bugs). Extending EXE to support other
checks is easy. If EXE has the entire set of constraints on
such expressions and STP can solve them, then EXE detects
if any input exists on that path that causes the error. Sim-
ilarly, if the check passes, then no input exists that causes
the error on that path — i.e., the path has been verified as
safe under all possible input values.

These checks find two errors in our example. First, the
symbolic index *p in the expression a[*p] (line 12) can cause
an out-of-bounds error because *p can equal 4: the pointer

p was computed using i with the constraint 0 ≤ i < 4 (line
8). Thus, i = 2 is legal, which means p can point to the low-
order byte of a[2] (recall that each element of a has four
bytes). The value of this byte is 4 after the subtraction at
line 9. Since a[4] references an illegal location one past the
end of a, EXE forks execution and on one path asserts that
i = 2 and emits an error (test2.ptr.err) and a test case
(test2.out), and on the other that i $= 2 and continues.

Second, the symbolic expression t / a[i] (line 16) can
generate a division by zero, which EXE detects by tracking
and solving the constraints that (1) i can equal 0, 1, or 3
and (2) a[0] can equal 0 after the decrement at line 9. EXE
again forks execution, emits an error (test3.div.err) and
a test case (test3.out) and exits. The other path adds the
constraint that i $= 0 and continues.

Note, EXE automatically turns a programmer assert(e)
on a symbolic expression e into a universal check of e sim-
ply because it tries to exhaust both paths of if-statements.
If EXE determines that e can be false, it will go down the
assertion’s false path, hitting its error handling code. Fur-
ther, if STP cannot find any such value, none exists on this
path. In the example, EXE explores both branches at line
20, and proves that no input value exists that can cause
either assert (line 21 and line 23) to fail. We leave work-
ing through this logic as an exercise for the more energetic
reader. Even a cursory attempt should show the trickiness
of manual reasoning about all-paths and all-values for even
trivial code fragments. (We spent more time than we would
like to admit puzzling over our own hand-crafted example
and eventually gave up, resorting to using EXE to double-
check our oft-wrong reasoning.)

1 : #include <assert.h>
2 : int main(void) {
3 : unsigned i, t, a[4] = { 1, 3, 5, 2 };
4 : make symbolic(&i);
5 : if(i >= 4)
6 : exit(0);
7 : // cast + symbolic offset + symbolic mutation
8 : char *p = (char *)a + i * 4;
9 : *p = *p − 1; // Just modifies one byte!
10:
11: // ERROR: EXE catches potential overflow i=2
12: t = a[*p];
13: // At this point i != 2.
14:
15: // ERROR: EXE catches div by 0 when i = 0.
16: t = t / a[i];
17: // At this point: i != 0 && i != 2.
18:
19: // EXE determines that neither assert fires.
20: if(t == 2)
21: assert(i == 1);
22: else
23: assert(i == 3);
24: }

Add constraints:
“p equals (char*)a + i * 4”

“p[0]’ equals p[0] - 1”



12

1 : #include <assert.h>
2 : int main(void) {
3 : unsigned i, t, a[4] = { 1, 3, 5, 2 };
4 : make symbolic(&i);
5 : if(i >= 4)
6 : exit(0);
7 : // cast + symbolic offset + symbolic mutation
8 : char *p = (char *)a + i * 4;
9 : *p = *p − 1; // Just modifies one byte!
10:
11: // ERROR: EXE catches potential overflow i=2
12: t = a[*p];
13: // At this point i != 2.
14:
15: // ERROR: EXE catches div by 0 when i = 0.
16: t = t / a[i];
17: // At this point: i != 0 && i != 2.
18:
19: // EXE determines that neither assert fires.
20: if(t == 2)
21: assert(i == 1);
22: else
23: assert(i == 3);
24: }

Figure 1: A contrived, but complete C program (simple.c) that
generates five test cases when run under EXE, two of which
trigger errors (a memory overflow at line 12 and a division by
zero at line 16). This example is used heavily throughout the
paper. We assume it runs on a 32-bit little-endian machine.

% exe−cc simple.c
% ./a.out
% ls exe−last

test1.forks test2.out test3.forks test4.out
test1.out test2.ptr.err test3.out test5.forks
test2.forks test3.div.err test4.forks test5.out

% cat exe−last/test3.div.err
ERROR: simple.c:16 Division/modulo by zero!

% cat exe−last/test3.out
# concrete byte values:
0 # i[0]
0 # i[1]
0 # i[2]
0 # i[3]

% cat exe−last/test3.forks
# take these choices to follow path
0 # false branch (line 5)
0 # false (implicit: pointer overflow check on line 9)
1 # true (implicit: div−by−0 check on line 16)

% cat exe−last/test2.out
# concrete byte values:
2 # i[0]
0 # i[1]
0 # i[2]
0 # i[3]

Figure 2: Transcript of compiling and running the C program
shown in Figure 1.

not get confused by this (dubious) cast, nor the subsequent
type-violating modification of a low-order byte at line 9.

Second, exe-cc inserts code to fork program execution
when it reaches a symbolic branch point, so that it can ex-
plore each possibility. Consider the if-statement at line 5,
if(i >= 4). Since i is symbolic, so is this expression. Thus,
EXE forks execution (using the UNIX fork() system call)
and on the true path asserts that i ≥ 4 is true, and on the
false path that it is not. Each time it adds a branch con-
straint, EXE queries STP to check that there exists at least
one solution for the current path’s constraints. If not, the
path is impossible and EXE stops executing it. In our ex-
ample, both branches are possible, so EXE explores both
(though the true path exits immediately at line 6).

Third, exe-cc inserts code that calls to check if a symbolic
expression could have any possible value that could cause ei-
ther (1) a null or out-of-bounds memory reference or (2) a
division or modulo by zero. If so, EXE forks execution and
(1) on the true path asserts that the condition does occur,
emits a test case, and terminates; (2) on the false path as-
serts that the condition does not occur and continues execu-
tion (to find more bugs). Extending EXE to support other
checks is easy. If EXE has the entire set of constraints on
such expressions and STP can solve them, then EXE detects
if any input exists on that path that causes the error. Sim-
ilarly, if the check passes, then no input exists that causes
the error on that path — i.e., the path has been verified as
safe under all possible input values.

These checks find two errors in our example. First, the
symbolic index *p in the expression a[*p] (line 12) can cause
an out-of-bounds error because *p can equal 4: the pointer

p was computed using i with the constraint 0 ≤ i < 4 (line
8). Thus, i = 2 is legal, which means p can point to the low-
order byte of a[2] (recall that each element of a has four
bytes). The value of this byte is 4 after the subtraction at
line 9. Since a[4] references an illegal location one past the
end of a, EXE forks execution and on one path asserts that
i = 2 and emits an error (test2.ptr.err) and a test case
(test2.out), and on the other that i $= 2 and continues.

Second, the symbolic expression t / a[i] (line 16) can
generate a division by zero, which EXE detects by tracking
and solving the constraints that (1) i can equal 0, 1, or 3
and (2) a[0] can equal 0 after the decrement at line 9. EXE
again forks execution, emits an error (test3.div.err) and
a test case (test3.out) and exits. The other path adds the
constraint that i $= 0 and continues.

Note, EXE automatically turns a programmer assert(e)
on a symbolic expression e into a universal check of e sim-
ply because it tries to exhaust both paths of if-statements.
If EXE determines that e can be false, it will go down the
assertion’s false path, hitting its error handling code. Fur-
ther, if STP cannot find any such value, none exists on this
path. In the example, EXE explores both branches at line
20, and proves that no input value exists that can cause
either assert (line 21 and line 23) to fail. We leave work-
ing through this logic as an exercise for the more energetic
reader. Even a cursory attempt should show the trickiness
of manual reasoning about all-paths and all-values for even
trivial code fragments. (We spent more time than we would
like to admit puzzling over our own hand-crafted example
and eventually gave up, resorting to using EXE to double-
check our oft-wrong reasoning.)

1 : #include <assert.h>
2 : int main(void) {
3 : unsigned i, t, a[4] = { 1, 3, 5, 2 };
4 : make symbolic(&i);
5 : if(i >= 4)
6 : exit(0);
7 : // cast + symbolic offset + symbolic mutation
8 : char *p = (char *)a + i * 4;
9 : *p = *p − 1; // Just modifies one byte!
10:
11: // ERROR: EXE catches potential overflow i=2
12: t = a[*p];
13: // At this point i != 2.
14:
15: // ERROR: EXE catches div by 0 when i = 0.
16: t = t / a[i];
17: // At this point: i != 0 && i != 2.
18:
19: // EXE determines that neither assert fires.
20: if(t == 2)
21: assert(i == 1);
22: else
23: assert(i == 3);
24: }

Could cause invalid dereference or division.
Fork, add constraints for invalid/valid cases.



13

1 : #include <assert.h>
2 : int main(void) {
3 : unsigned i, t, a[4] = { 1, 3, 5, 2 };
4 : make symbolic(&i);
5 : if(i >= 4)
6 : exit(0);
7 : // cast + symbolic offset + symbolic mutation
8 : char *p = (char *)a + i * 4;
9 : *p = *p − 1; // Just modifies one byte!
10:
11: // ERROR: EXE catches potential overflow i=2
12: t = a[*p];
13: // At this point i != 2.
14:
15: // ERROR: EXE catches div by 0 when i = 0.
16: t = t / a[i];
17: // At this point: i != 0 && i != 2.
18:
19: // EXE determines that neither assert fires.
20: if(t == 2)
21: assert(i == 1);
22: else
23: assert(i == 3);
24: }

Figure 1: A contrived, but complete C program (simple.c) that
generates five test cases when run under EXE, two of which
trigger errors (a memory overflow at line 12 and a division by
zero at line 16). This example is used heavily throughout the
paper. We assume it runs on a 32-bit little-endian machine.

% exe−cc simple.c
% ./a.out
% ls exe−last

test1.forks test2.out test3.forks test4.out
test1.out test2.ptr.err test3.out test5.forks
test2.forks test3.div.err test4.forks test5.out

% cat exe−last/test3.div.err
ERROR: simple.c:16 Division/modulo by zero!

% cat exe−last/test3.out
# concrete byte values:
0 # i[0]
0 # i[1]
0 # i[2]
0 # i[3]

% cat exe−last/test3.forks
# take these choices to follow path
0 # false branch (line 5)
0 # false (implicit: pointer overflow check on line 9)
1 # true (implicit: div−by−0 check on line 16)

% cat exe−last/test2.out
# concrete byte values:
2 # i[0]
0 # i[1]
0 # i[2]
0 # i[3]

Figure 2: Transcript of compiling and running the C program
shown in Figure 1.

not get confused by this (dubious) cast, nor the subsequent
type-violating modification of a low-order byte at line 9.

Second, exe-cc inserts code to fork program execution
when it reaches a symbolic branch point, so that it can ex-
plore each possibility. Consider the if-statement at line 5,
if(i >= 4). Since i is symbolic, so is this expression. Thus,
EXE forks execution (using the UNIX fork() system call)
and on the true path asserts that i ≥ 4 is true, and on the
false path that it is not. Each time it adds a branch con-
straint, EXE queries STP to check that there exists at least
one solution for the current path’s constraints. If not, the
path is impossible and EXE stops executing it. In our ex-
ample, both branches are possible, so EXE explores both
(though the true path exits immediately at line 6).

Third, exe-cc inserts code that calls to check if a symbolic
expression could have any possible value that could cause ei-
ther (1) a null or out-of-bounds memory reference or (2) a
division or modulo by zero. If so, EXE forks execution and
(1) on the true path asserts that the condition does occur,
emits a test case, and terminates; (2) on the false path as-
serts that the condition does not occur and continues execu-
tion (to find more bugs). Extending EXE to support other
checks is easy. If EXE has the entire set of constraints on
such expressions and STP can solve them, then EXE detects
if any input exists on that path that causes the error. Sim-
ilarly, if the check passes, then no input exists that causes
the error on that path — i.e., the path has been verified as
safe under all possible input values.

These checks find two errors in our example. First, the
symbolic index *p in the expression a[*p] (line 12) can cause
an out-of-bounds error because *p can equal 4: the pointer

p was computed using i with the constraint 0 ≤ i < 4 (line
8). Thus, i = 2 is legal, which means p can point to the low-
order byte of a[2] (recall that each element of a has four
bytes). The value of this byte is 4 after the subtraction at
line 9. Since a[4] references an illegal location one past the
end of a, EXE forks execution and on one path asserts that
i = 2 and emits an error (test2.ptr.err) and a test case
(test2.out), and on the other that i $= 2 and continues.

Second, the symbolic expression t / a[i] (line 16) can
generate a division by zero, which EXE detects by tracking
and solving the constraints that (1) i can equal 0, 1, or 3
and (2) a[0] can equal 0 after the decrement at line 9. EXE
again forks execution, emits an error (test3.div.err) and
a test case (test3.out) and exits. The other path adds the
constraint that i $= 0 and continues.

Note, EXE automatically turns a programmer assert(e)
on a symbolic expression e into a universal check of e sim-
ply because it tries to exhaust both paths of if-statements.
If EXE determines that e can be false, it will go down the
assertion’s false path, hitting its error handling code. Fur-
ther, if STP cannot find any such value, none exists on this
path. In the example, EXE explores both branches at line
20, and proves that no input value exists that can cause
either assert (line 21 and line 23) to fail. We leave work-
ing through this logic as an exercise for the more energetic
reader. Even a cursory attempt should show the trickiness
of manual reasoning about all-paths and all-values for even
trivial code fragments. (We spent more time than we would
like to admit puzzling over our own hand-crafted example
and eventually gave up, resorting to using EXE to double-
check our oft-wrong reasoning.)

Fork, add constraints.
On false branch, emit error



14

1 : #include <assert.h>
2 : int main(void) {
3 : unsigned i, t, a[4] = { 1, 3, 5, 2 };
4 : make symbolic(&i);
5 : if(i >= 4)
6 : exit(0);
7 : // cast + symbolic offset + symbolic mutation
8 : char *p = (char *)a + i * 4;
9 : *p = *p − 1; // Just modifies one byte!
10:
11: // ERROR: EXE catches potential overflow i=2
12: t = a[*p];
13: // At this point i != 2.
14:
15: // ERROR: EXE catches div by 0 when i = 0.
16: t = t / a[i];
17: // At this point: i != 0 && i != 2.
18:
19: // EXE determines that neither assert fires.
20: if(t == 2)
21: assert(i == 1);
22: else
23: assert(i == 3);
24: }

Figure 1: A contrived, but complete C program (simple.c) that
generates five test cases when run under EXE, two of which
trigger errors (a memory overflow at line 12 and a division by
zero at line 16). This example is used heavily throughout the
paper. We assume it runs on a 32-bit little-endian machine.

% exe−cc simple.c
% ./a.out
% ls exe−last

test1.forks test2.out test3.forks test4.out
test1.out test2.ptr.err test3.out test5.forks
test2.forks test3.div.err test4.forks test5.out

% cat exe−last/test3.div.err
ERROR: simple.c:16 Division/modulo by zero!

% cat exe−last/test3.out
# concrete byte values:
0 # i[0]
0 # i[1]
0 # i[2]
0 # i[3]

% cat exe−last/test3.forks
# take these choices to follow path
0 # false branch (line 5)
0 # false (implicit: pointer overflow check on line 9)
1 # true (implicit: div−by−0 check on line 16)

% cat exe−last/test2.out
# concrete byte values:
2 # i[0]
0 # i[1]
0 # i[2]
0 # i[3]

Figure 2: Transcript of compiling and running the C program
shown in Figure 1.

not get confused by this (dubious) cast, nor the subsequent
type-violating modification of a low-order byte at line 9.

Second, exe-cc inserts code to fork program execution
when it reaches a symbolic branch point, so that it can ex-
plore each possibility. Consider the if-statement at line 5,
if(i >= 4). Since i is symbolic, so is this expression. Thus,
EXE forks execution (using the UNIX fork() system call)
and on the true path asserts that i ≥ 4 is true, and on the
false path that it is not. Each time it adds a branch con-
straint, EXE queries STP to check that there exists at least
one solution for the current path’s constraints. If not, the
path is impossible and EXE stops executing it. In our ex-
ample, both branches are possible, so EXE explores both
(though the true path exits immediately at line 6).

Third, exe-cc inserts code that calls to check if a symbolic
expression could have any possible value that could cause ei-
ther (1) a null or out-of-bounds memory reference or (2) a
division or modulo by zero. If so, EXE forks execution and
(1) on the true path asserts that the condition does occur,
emits a test case, and terminates; (2) on the false path as-
serts that the condition does not occur and continues execu-
tion (to find more bugs). Extending EXE to support other
checks is easy. If EXE has the entire set of constraints on
such expressions and STP can solve them, then EXE detects
if any input exists on that path that causes the error. Sim-
ilarly, if the check passes, then no input exists that causes
the error on that path — i.e., the path has been verified as
safe under all possible input values.

These checks find two errors in our example. First, the
symbolic index *p in the expression a[*p] (line 12) can cause
an out-of-bounds error because *p can equal 4: the pointer

p was computed using i with the constraint 0 ≤ i < 4 (line
8). Thus, i = 2 is legal, which means p can point to the low-
order byte of a[2] (recall that each element of a has four
bytes). The value of this byte is 4 after the subtraction at
line 9. Since a[4] references an illegal location one past the
end of a, EXE forks execution and on one path asserts that
i = 2 and emits an error (test2.ptr.err) and a test case
(test2.out), and on the other that i $= 2 and continues.

Second, the symbolic expression t / a[i] (line 16) can
generate a division by zero, which EXE detects by tracking
and solving the constraints that (1) i can equal 0, 1, or 3
and (2) a[0] can equal 0 after the decrement at line 9. EXE
again forks execution, emits an error (test3.div.err) and
a test case (test3.out) and exits. The other path adds the
constraint that i $= 0 and continues.

Note, EXE automatically turns a programmer assert(e)
on a symbolic expression e into a universal check of e sim-
ply because it tries to exhaust both paths of if-statements.
If EXE determines that e can be false, it will go down the
assertion’s false path, hitting its error handling code. Fur-
ther, if STP cannot find any such value, none exists on this
path. In the example, EXE explores both branches at line
20, and proves that no input value exists that can cause
either assert (line 21 and line 23) to fail. We leave work-
ing through this logic as an exercise for the more energetic
reader. Even a cursory attempt should show the trickiness
of manual reasoning about all-paths and all-values for even
trivial code fragments. (We spent more time than we would
like to admit puzzling over our own hand-crafted example
and eventually gave up, resorting to using EXE to double-
check our oft-wrong reasoning.)

Using exe-cc



15

Constraint solving: STP

• Insight:  if memory is a giant array of bits, 
constraint solving can be reduced to SAT

• Idea:  turn set of constraints on memory 
regions into a set of boolean clauses in 
CNF

• Feed this into an off-the-shelf SAT solver 
(MiniSAT)

http://minisat.se/
http://minisat.se/


Caveat - pointers

• STP doesn’t directly support pointers

• EXE takes a similar approach to CCured 
and tags each pointer with a ‘home’ region

• Double-dereferences resolved with 
concretization, at the cost of soundness

16



STP results

17

Solver Total Time Timeouts
CVCL 60,366s 546
STP (no optimizations) 3,378s 36
STP (substitution) 1,216s 1
STP (refinement) 624s 1
STP (simplifications) 336s 0
STP (subst+refinement) 513s 1
STP (simplif+subst) 233s 0
STP (simplif+refinement) 220s 0
STP (all optimizations) 110s 0

Table 1: STP vs.CVCL. Queries time out (are aborted) after
60 seconds, which underestimates performance differences,
since they could run for much longer. Using this conservative
estimate, fully optimized STP is roughly 30X faster than the
unoptimized version and 550X faster than CVCL and has no
timeouts.

array axioms, at which time it is guaranteed to return a cor-
rect result because there are no more axioms it can violate.
However, in practice, this loop will often terminate quickly
because the formula can be proved unsatisfiable without all
the array axioms, or because it luckily finds a true satisfying
assignment without adding all the axioms.

Besides the above mentioned optimizations, STP imple-
ments several boolean and mathematical identities. These
identities, or simplifications, also dramatically reduce the
size of the input, before it is fed to the SAT solver. Some
example identities include associativity and commutativity
laws for addition and multiplication, distribution of mul-
tiplication by constants over addition, and combining like
terms (e.g., x + (−x) is simplified to 0).

All these optimizations have made it possible to deal with
fairly large constant arrays when there are relatively few
non-constant index expressions, which is sufficient to permit
considerable progress in using EXE on real examples.

3.4 Measured performance
Table 1 gives experimental measurements for these op-

timizations. The experiment consists of running different
versions of STP and our old solver, CVCL, over the perfor-
mance regression suite we have built up of 8495 test cases
taken from our test programs. The experiments for all solvers
were run on a Pentium 4 machine at 3.2 GHz, with 2 GB
of RAM and 512 KB of cache. The table gives the times
taken by CVCL, baseline STP with no optimizations, STP
with a subset of all optimizations enabled, and STP with
full optimizations, i.e. substitution, array-based refinement,
and simplifications. The third column shows the number of
examples on which each solver timed out. The timeout was
set at 60 seconds, and is added as penalty to the time taken
by the solver (but in fact causes us to grossly underestimate
the time taken by CVCL and earlier versions of STP since
they could run for many minutes or even hours on some of
the examples).

The baseline STP is nearly 20 times faster than CVCL,
and more interestingly times out in far fewer cases. The fully
optimized version of STP is about 30 times faster than the
unoptimized version, almost 550 times faster than CVCL,
and there are no timeouts.

4. EXE OPTIMIZATIONS
This section presents optimizations EXE uses and mea-

sures their effectiveness on five benchmarks. We first present
two optimizations: caching constraints to avoid calling STP
(§ 4.1), and removing irrelevant constraints from the queries
EXE sends to STP (§ 4.2). We then measure the cumulative
improvement of these optimizations, and provide an empiri-
cal feel for what symbolic execution looks like, including the
time spent in various parts of EXE, and a description of the
symbolic slice through the code (§ 4.3). Finally, we discuss
and measure EXE’s search heuristics (§ 4.4).

4.1 Constraint caching
EXE caches the result of satisfiability queries and con-

straint solutions in order to avoid calling STP when possible.
This cache is managed by a server process so that multiple
EXE processes (created by forking at each conditional) can
coordinate. Before invoking STP on a query q, an EXE pro-
cess prints q as a string, computes an MD4 cryptographic
hash of this string, and sends this hash to the server. The
server checks its persistent cache (a file) and if it gets a hit,
returns the result. If not, the EXE process does a local STP
query and then sends the (hash, result) pair back to the
server. Constraint solutions are cached in a similar way.

4.2 Constraint independence optimization
This section describes one of EXE’s most important opti-

mizations, constraint independence, which exploits the fact
that we can often divide the set of constraints EXE tracks
into multiple independent subsets of constraints. Two con-
straints are considered to be independent if they have dis-
joint sets of operands (i.e. disjoint sets of array reads).

For example, assume EXE tracks the following set of three
constraints:

(A[1] = A[2] + A[3]) ∧ (A[2] > A[4]) ∧ (A[7] = A[8])
We can divide this set into two subsets of independent con-
straints

(A[1] = A[2] + A[3]) ∧ (A[2] > A[4])

and
A[7] = A[8]

and solve them separately.
Breaking a constraint into multiple independent subsets

has two benefits. First, EXE can discard irrelevant con-
straints when it asks STP if a constraint c is satisfiable, with
a corresponding decrease in cost. Instead of sending all the
constraints collected so far to STP, EXE only sends the sub-
set of constraints sc to which c belongs, ignoring all other
constraints. The worst case, when no irrelevant constraints
are found, costs no more than the original query (omitting
the small cost of computing the independent subsets).

Second, this optimization yields additional cache hits, since
a given a subset of independent constraints may have ap-
peared individually in previous runs. Conversely, including
all constraints vastly increases the chance that at least one
is different and so gets no cache hit. To illustrate, assume
we have the following code fragment, which operates on two
unconstrained symbolic arrays A and B:

if (A[i] > A[i+1]) {
...

}
if (B[j] + B[j-1] == B[j+1]) {

...
}

(Pentium 4 machine at 3.2 GHz, with 2 GB of RAM and 512 KB of cache)



EXE Results

18

There are four paths through this code; EXE will thus cre-
ate four processes. After forking and following each branch,
EXE checks if the path is satisfiable. Without the constraint
independence optimization, each of these four satisfiability
queries will differ and miss in the cache. However, if the
optimization is applied, some queries repeat. For example,
when the second branch is reached, two of the four queries
will be

(A[i] > A[i + 1]) ∧ (B[j] + B[j − 1] = B[j + 1])

and

(A[i] ≤ A[i + 1]) ∧ (B[j] + B[j − 1] = B[j + 1])

which both devolve to

B[j] + B[j − 1] = B[j + 1]

since, in each query, the first constraint is unrelated to the
last one, and its satisfiability was already determined when
EXE reached the first branch.

Real programs often have many independent branches,
which introduce many irrelevant constraints. These add up
quickly. For example, assuming n consecutive independent
branches (the example above is such an instance for n =
2), EXE will issue 2(2n − 1) queries to STP (for each if
statement, we issue two queries to check if both branches
are possible). The optimization exponentially reduces this
query count to 2n (two queries the first time we see each
branch), since the rest of the time we find the result in the
cache.

We compute the constraint independence subsets by con-
structing a graph G, whose nodes are the set of all array
reads used in the given set of constraints. For the first ex-
ample in the section, the set of nodes is {A[1], A[2], A[3],
A[4], A[7], A[8]}. We add an edge between nodes ni and nj

of G if and only if there exists a constraint c that contains
both as operands. Once the graph G is constructed, we ap-
ply a standard algorithm to determine G’s connected com-
ponents. Finally, for each connected component, we create a
corresponding independent subset of constraints by adding
all the constraints that contain at least one of the nodes in
that connected component. At the implementation level, we
don’t construct the graph G explicitly. Instead, we keep the
nodes of G in a union-find structure [17], which we update
each time we add a new constraint.

There are two additional issues that our algorithm has
to take into account. First, an array read may contain a
symbolic index. In this case, we are conservative, and merge
all the elements of that array into a single subset.

The second issue relates to array writes. Since EXE and
STP arrays are functional, each array read explicitly con-
tains an ordered list of all array writes performed so far.
Each array write is remembered as a pair consisting of the
location that was updated, and the expression that was writ-
ten to that location. When processing this list of array
writes, we are again conservative, and merge all the expres-
sions written into the array (the right hand side of each array
write) into the subset of the original read. In addition, if any
array write is performed at a symbolic index, we merge all
the elements of the array into a single subset.

4.3 Experiments
We evaluate our optimizations on five benchmarks. These

benchmarks consist of the three applications discussed in

bpf expat pcre tcpdump udhcpd
Test cases 7333 360 866 2140 328
None 30.6 28.4 31.3 28.2 30.4
Caching 32.6 30.8 34.4 27.0 36.4
Independence 17.8 25.2 10.0 24.9 30.5
All 10.3 26.3 7.5 23.6 32.1
STP cost 6.9 24.6 2.8 22.4 23.1

Table 2: Optimization measurements, times in minutes.
STP cost gives time spent in STP when all optimizations
are enabled.Tables 3, 4, and 5 explore the fully optimized
run (All) in more detail.

Section 5, bpf, pcre, and udhcpd, to which we added two
more: expat, an XML parser library, and tcpdump, a tool for
printing out the headers of packets on a network interface
that match a boolean expression.

We run each benchmark under four versions of EXE: no
optimization, caching only, independence only, and finally
with both optimizations turned on. As a baseline, we run
each benchmark for roughly 30 minutes using the unopti-
mized version of EXE, and record the number of test cases
n that this run generates. We then run the other versions
until they generate n test cases. All experiments are per-
formed on a dual-core 3.2 GHz Intel Pentium D machine
with 2 GB of RAM, and 2048 KB of cache.

Table 2 gives the number of test cases generated, as well
as the runtime for each optimization combination. Full op-
timization (“All”) significantly sped up two of five bench-
marks: bpf by roughly a factor of three, and pcre by more
than a factor of four. Both tcpdump and expat had marginal
improvements (20% and 7% faster respectively), but udhcpd
slows down by 5.6%. As the last row shows, with the ex-
ception of pcre, the time spent in STP represents by far the
dominant cost of EXE checking.

Table 3 breaks down the full optimization run. As its first
three rows show, caching without independence is not a win
— its overhead (see Table 2) actually increases runtime for
most applications, varying between 6.5% for bpf and 19.7%
for pcre. With independence, the hit rate jumps sharply for
both bpf and pcre (and, to a lesser extent, tcpdump), due
to its removal of irrelevant constraints. The other two appli-
cations show no benefit from these optimizations — udhcpd
has no independent constraints and expat has no cache hits.
The average number of independent subsets (row 3) shows
how interdependent our constraints are, varying from over
2,800 subsets for expat to only 1 (i.e., no independent con-
straints) for udhcpd.

The next three rows (4–6) measure the overhead spent in
various parts of EXE. Reassuringly, the cost of independence
is near zero. On the other hand, cache lookup overhead (row
5) is significant, due almost entirely to our naive implemen-
tation. On each cache lookup (§ 4.1), EXE prints the query
as a string and then hashes it. As the table shows (row 6) the
cost of printing the string dominates all other cache lookup
overheads. Obviously, we plan to eliminate this inefficiency
in the next version of the system.

Table 4 breaks down the queries sent to STP. The first
three rows give the total number of: queries, constraints,
and nodes. These last two numbers give a feel for query
complexity: bpf is the easiest case (a small number of con-
straints, with roughly five nodes per constraint), whereas
udhcpd is the worst with 688 nodes per constraint.

The next two rows give the number of non-linear con-

(number of test cases generated, times in minutes on a dual-core 3.2 GHz 
Intel Pentium D machine with 2 GB of RAM, and 2048 KB of cache)



Results (detail) 

19

bpf expat pcre tcpdump udhcpd
1 Symbolic input size (bytes) 96 10 16 84 548
2 Total statements run (not unique) 298,195 41,345 423,182 40,097 15,258
3 % of statements symbolic 29.2% 8.5% 34.7% 41.7% 23.6% %
4 Explicit symbolic branch points 77,024 1,969 98,138 11,425 888
5 % with both branches feasible 11.3% 19.3% 0.9% 19.4% 52.8%
6 Avg. # symbolic branches per path 38.33 43.44 55.72 103.37 200.14
7 Symbolic checks 1,490 904 4,451 552 1,535
8 Pointer concretizations 0 0 0 73 0
9 Symbolic args. to uninstr. calls 0 0 0 0 0

Table 5: Dynamic counts from EXE execution runs.

Figure 4: Best-first search vs. depth-first search.

process (and its children) in a DFS manner for a while. It
then picks another best-first candidate and iterates. This
is just one of many possible heuristics, and the server is
structured so that new heuristics are easy to plug in.

We experimentally evaluate our best-first search (BFS)
heuristic in the context of one of our benchmarks, the Berke-
ley Packet Filter (BPF) (described in more detail in § 5.1).
We start two separate executions of EXE, one using DFS
and the other using BFS. We let both EXE executions run
until they achieved full basic block coverage. Figure 4 com-
pares BFS to DFS in terms of basic block coverage. (For
visual clarity the graph only shows block coverage for the
first 1500 test cases, as only a few blocks are missing from
the coverage by these test cases.) BFS converges to full
coverage more than twice as fast as DFS: 7,956 test cases
versus 18,667. More precisely, EXE gets 91.74% block cov-
erage, since there are several basic blocks in BPF that EXE
cannot reach, such as dead code (e.g. the failure branch
of asserts), or branches that do not depend on the input
marked as symbolic.

Figure 5 then compares EXE against random testing also
in terms of basic block coverage. We generate one million
random test cases of the same size as those generated by
EXE, and run these random test cases through a lightly-
instrumented version of BPF that records basic block cov-
erage. These test cases only cover 56.96% of the blocks in
BPF; EXE achieves the same coverage in only 75 tests when
using BFS. Even more strikingly, these million random test
cases yield only 131 unique paths through the code, while
each of EXE’s test cases represents a unique path.

Figure 5: EXE with best-first search vs. random testing.

5. USING EXE TO FIND BUGS
This section presents three case studies that use EXE to

find bugs in: (1) two packet filter implementations, (2) the
udhcpd DHCP server, and (3) the pcre Perl compatible reg-
ular expressions library. We also summarize a previous effort
of applying EXE to file system code.

5.1 Packet filters
Many operating systems allow programs to specify packet

filters which describe the network packets they want to re-
ceive. Most packet filter implementations are variants of
the Berkeley Packet Filter (BPF) system. BPF filters are
written in a pseudo-assembly language, downloaded into the
kernel, validated by the BPF system, and then applied to
incoming packets. We used EXE to check the packet fil-
ter in both FreeBSD and Linux. FreeBSD uses BPF, while
Linux uses a heavily modified version of it. EXE found two
buffer overflows in the former and four errors in the latter.
BPF is one particularly hard test of EXE — small, heavily-
inspected and mature code, written by programmers known
for their skill.

A filter is an array of instructions specifying an opcode
(code), a possible memory offset to read or write (k), and
several other fields. The BPF interpreter iterates over this
filter, executing each opcode’s corresponding action. This
loop is the main source of vulnerabilities but is hard to test
exhaustively (e.g., hitting all opcodes even once using ran-
dom testing takes a long time).

We used a two-part checking process. First, we marked a
fixed-sized array of filter instructions as symbolic and passed



Results (detail) 

19

bpf expat pcre tcpdump udhcpd
1 Symbolic input size (bytes) 96 10 16 84 548
2 Total statements run (not unique) 298,195 41,345 423,182 40,097 15,258
3 % of statements symbolic 29.2% 8.5% 34.7% 41.7% 23.6% %
4 Explicit symbolic branch points 77,024 1,969 98,138 11,425 888
5 % with both branches feasible 11.3% 19.3% 0.9% 19.4% 52.8%
6 Avg. # symbolic branches per path 38.33 43.44 55.72 103.37 200.14
7 Symbolic checks 1,490 904 4,451 552 1,535
8 Pointer concretizations 0 0 0 73 0
9 Symbolic args. to uninstr. calls 0 0 0 0 0

Table 5: Dynamic counts from EXE execution runs.

Figure 4: Best-first search vs. depth-first search.

process (and its children) in a DFS manner for a while. It
then picks another best-first candidate and iterates. This
is just one of many possible heuristics, and the server is
structured so that new heuristics are easy to plug in.

We experimentally evaluate our best-first search (BFS)
heuristic in the context of one of our benchmarks, the Berke-
ley Packet Filter (BPF) (described in more detail in § 5.1).
We start two separate executions of EXE, one using DFS
and the other using BFS. We let both EXE executions run
until they achieved full basic block coverage. Figure 4 com-
pares BFS to DFS in terms of basic block coverage. (For
visual clarity the graph only shows block coverage for the
first 1500 test cases, as only a few blocks are missing from
the coverage by these test cases.) BFS converges to full
coverage more than twice as fast as DFS: 7,956 test cases
versus 18,667. More precisely, EXE gets 91.74% block cov-
erage, since there are several basic blocks in BPF that EXE
cannot reach, such as dead code (e.g. the failure branch
of asserts), or branches that do not depend on the input
marked as symbolic.

Figure 5 then compares EXE against random testing also
in terms of basic block coverage. We generate one million
random test cases of the same size as those generated by
EXE, and run these random test cases through a lightly-
instrumented version of BPF that records basic block cov-
erage. These test cases only cover 56.96% of the blocks in
BPF; EXE achieves the same coverage in only 75 tests when
using BFS. Even more strikingly, these million random test
cases yield only 131 unique paths through the code, while
each of EXE’s test cases represents a unique path.

Figure 5: EXE with best-first search vs. random testing.

5. USING EXE TO FIND BUGS
This section presents three case studies that use EXE to

find bugs in: (1) two packet filter implementations, (2) the
udhcpd DHCP server, and (3) the pcre Perl compatible reg-
ular expressions library. We also summarize a previous effort
of applying EXE to file system code.

5.1 Packet filters
Many operating systems allow programs to specify packet

filters which describe the network packets they want to re-
ceive. Most packet filter implementations are variants of
the Berkeley Packet Filter (BPF) system. BPF filters are
written in a pseudo-assembly language, downloaded into the
kernel, validated by the BPF system, and then applied to
incoming packets. We used EXE to check the packet fil-
ter in both FreeBSD and Linux. FreeBSD uses BPF, while
Linux uses a heavily modified version of it. EXE found two
buffer overflows in the former and four errors in the latter.
BPF is one particularly hard test of EXE — small, heavily-
inspected and mature code, written by programmers known
for their skill.

A filter is an array of instructions specifying an opcode
(code), a possible memory offset to read or write (k), and
several other fields. The BPF interpreter iterates over this
filter, executing each opcode’s corresponding action. This
loop is the main source of vulnerabilities but is hard to test
exhaustively (e.g., hitting all opcodes even once using ran-
dom testing takes a long time).

We used a two-part checking process. First, we marked a
fixed-sized array of filter instructions as symbolic and passed



Search heuristics

20

• Need to limit the number of simultaneously 
running forked processes

• (unless you like forkbombs)

• What order do we run forked processes 
in?

• Currently using a modified best-first search



Search heuristics

21

bpf expat pcre tcpdump udhcpd
1 Symbolic input size (bytes) 96 10 16 84 548
2 Total statements run (not unique) 298,195 41,345 423,182 40,097 15,258
3 % of statements symbolic 29.2% 8.5% 34.7% 41.7% 23.6% %
4 Explicit symbolic branch points 77,024 1,969 98,138 11,425 888
5 % with both branches feasible 11.3% 19.3% 0.9% 19.4% 52.8%
6 Avg. # symbolic branches per path 38.33 43.44 55.72 103.37 200.14
7 Symbolic checks 1,490 904 4,451 552 1,535
8 Pointer concretizations 0 0 0 73 0
9 Symbolic args. to uninstr. calls 0 0 0 0 0

Table 5: Dynamic counts from EXE execution runs.

Figure 4: Best-first search vs. depth-first search.

process (and its children) in a DFS manner for a while. It
then picks another best-first candidate and iterates. This
is just one of many possible heuristics, and the server is
structured so that new heuristics are easy to plug in.

We experimentally evaluate our best-first search (BFS)
heuristic in the context of one of our benchmarks, the Berke-
ley Packet Filter (BPF) (described in more detail in § 5.1).
We start two separate executions of EXE, one using DFS
and the other using BFS. We let both EXE executions run
until they achieved full basic block coverage. Figure 4 com-
pares BFS to DFS in terms of basic block coverage. (For
visual clarity the graph only shows block coverage for the
first 1500 test cases, as only a few blocks are missing from
the coverage by these test cases.) BFS converges to full
coverage more than twice as fast as DFS: 7,956 test cases
versus 18,667. More precisely, EXE gets 91.74% block cov-
erage, since there are several basic blocks in BPF that EXE
cannot reach, such as dead code (e.g. the failure branch
of asserts), or branches that do not depend on the input
marked as symbolic.

Figure 5 then compares EXE against random testing also
in terms of basic block coverage. We generate one million
random test cases of the same size as those generated by
EXE, and run these random test cases through a lightly-
instrumented version of BPF that records basic block cov-
erage. These test cases only cover 56.96% of the blocks in
BPF; EXE achieves the same coverage in only 75 tests when
using BFS. Even more strikingly, these million random test
cases yield only 131 unique paths through the code, while
each of EXE’s test cases represents a unique path.

Figure 5: EXE with best-first search vs. random testing.

5. USING EXE TO FIND BUGS
This section presents three case studies that use EXE to

find bugs in: (1) two packet filter implementations, (2) the
udhcpd DHCP server, and (3) the pcre Perl compatible reg-
ular expressions library. We also summarize a previous effort
of applying EXE to file system code.

5.1 Packet filters
Many operating systems allow programs to specify packet

filters which describe the network packets they want to re-
ceive. Most packet filter implementations are variants of
the Berkeley Packet Filter (BPF) system. BPF filters are
written in a pseudo-assembly language, downloaded into the
kernel, validated by the BPF system, and then applied to
incoming packets. We used EXE to check the packet fil-
ter in both FreeBSD and Linux. FreeBSD uses BPF, while
Linux uses a heavily modified version of it. EXE found two
buffer overflows in the former and four errors in the latter.
BPF is one particularly hard test of EXE — small, heavily-
inspected and mature code, written by programmers known
for their skill.

A filter is an array of instructions specifying an opcode
(code), a possible memory offset to read or write (k), and
several other fields. The BPF interpreter iterates over this
filter, executing each opcode’s corresponding action. This
loop is the main source of vulnerabilities but is hard to test
exhaustively (e.g., hitting all opcodes even once using ran-
dom testing takes a long time).

We used a two-part checking process. First, we marked a
fixed-sized array of filter instructions as symbolic and passed



EXE finds real bugs

• FreeBSD BPF accepts 
filter rules in custom 
opcode format

• Forgets to check memory 
read/write offset in some 
cases, leading to arbitrary 
kernel memory access

22

s[0].code = BPF STX; // also: (BPF LDX|BPF MEM)
s[0].k = 0xfffffff0UL;
s[1].code = BPF RET;

Figure 6: A BPF filter of death

// Code extracted from bpf validate. Rejects
// filter if opcode’s memory offset is more than
// BPF MEMWORDS.
// Forgets to check opcodes LDX and STX!
if((BPF CLASS(p−>code) == BPF ST
| | (BPF CLASS(p−>code) == BPF LD &&

(p−>code & 0xe0) == BPF MEM))
&& p−>k >= BPF MEMWORDS )
return 0;

. . .
// Code extracted from bpf filter: pc points to current
// instruction. Both cases can overflow mem[pc->k].

case BPF LDX|BPF MEM:
X = mem[pc−>k]; continue;

. . .
case BPF STX:

mem[pc−>k] = X; continue;

Figure 7: The BPF code Figure 6’s filter exploits.

it to the packet filter validation routine bpf validate, which
returns 1 if it considers a filter legal. For each valid filter,
we then mark a fixed-size byte array (representing a packet)
as symbolic and run the filter interpreter bpf filter on the
symbolic filter with the symbolic packet, thus checking the
filter against all possible data packets of that length.

This checking illustrates one of EXE’s interesting features:
it turns interpreters into generators of the programs they can
interpret. In our example, running the BPF interpreter on
a symbolic filter causes it to generate all possible filters of
that length, since each branch of the interpreter will fork
execution, adding a constraint corresponding to the opcode
it checked.

Figure 6 shows one of the two filters EXE found that cause
buffer overflows in FreeBSD’s BPF. The bug can occur when
the opcode of a BPF instruction is either BPF STX or BPF LDX
| BPF MEM. As shown in Figure 7, bpf validate forgets to
bounds check the memory offset given by these instructions,
as it does for instructions with opcodes BPF ST or BPF LD |
BPF MEM. This missing check means these instructions can
write or read arbitrary offsets off the fixed-sized buffer mem,
thus crashing the kernel or allowing a trivial exploit.

Linux had a trickier example. EXE found three filters
that can crash the kernel because of an arithmetic over-
flow in a bounds check, shown in Figure 8. As with BPF,

// other filters that cause this error:
// code = (BPF LD|BPF B|BPF IND)
// code = (BPF LD|BPF H|BPF IND)
s[0].code = BPF LD|BPF B|BPF ABS;
s[0].k = 0x7fffffffUL;
s[1].code = BPF RET;
s[1].k = 0xfffffff0UL;

Figure 8: A Linux filter of death

static inline void *
skb header pointer(struct sk buff *skb,

int offset, int len, void *buffer) {

int hlen = skb headlen(skb);

// Memory overflow. offset=s[0].k; a filter
// can make this value very large, causing
// offset + len to overflow, trivially passing
// the bounds check.
if (offset + len <= hlen)

return skb−>data + offset;

Figure 9: The Linux code Figure 8’s filter exploits.

the offset field (k) causes the problem. Here, the code to
interpret BPF LD instructions eventually calls the function
skb header pointer, which computes an offset into a given
packet’s data and returns it. This routine is passed s[0].k
as the offset parameter, and values 4 or 2 as the len pa-
rameter. It extracts the size of the current message header
into hlen and checks that offset + len ≤ hlen. How-
ever, the filter can cause offset to be very large, which
means the signed addition offset + len will overflow to a
small value, passing the check, but then causing that very
large offset value to be added to the message data pointer.
This allows attackers to easily crash the machine. This error
would be hard to find with random testing. Its occurrence
in highly-visible, widely-used code, demonstrates that such
tricky cases can empirically withstand repeated manual in-
spection.

5.2 A complete server: udhcpd
We also checked udhcpd-0.9.8, a clean, well-tested user-

level DHCP server. We marked its input packet as symbolic,
and then modified its network read call to return a packet
of at most 548 bytes. After running udhcpd long enough to
generate 596 test cases, EXE detected five different mem-
ory errors: four-byte read overflows at lines 213 and 214 in
dhcpd.c and three similar errors at lines 79, 94, and 99 in
options.c. These errors were not found when we tested the
code using random testing. EXE generated packets to trig-
ger all of these errors, one of which is shown in Figure 10.
We confirmed these errors by rerunning the concrete error
packets on an uninstrumented version of udhcpd while mon-
itoring it with valgrind, a tool that dynamically checks for
some types of memory corruption and storage leaks [38].

5.3 Perl Compatible Regular Expressions
The pcre library [39] is used by several popular open-

source projects, including Apache, PHP, and Postfix. For
speed, pcre provides a routine pcre compile, which com-
piles a pattern string into a regular expression for later use.
This routine has been the target of security advisories in the
past [40].

We checked this routine by marking a null-terminated pat-
tern string as symbolic and then passing it to pcre compile.
EXE quickly found a class of issues with this routine in a
recent version of pcre (6.6). The function iterates over the
provided pattern twice, first to do basic error checking and
to estimate how much memory to allocate for the compiled
pattern, and second to do actual compilation. The bugs



EXE finds real bugs

23

• 2 buffer overflows in BSD Berkeley Packet 
Filter

• 4 errors in Linux packet filter

• 5 errors in udhcpd

• A class of errors in pcre

• Errors in ext2, ext3, JFS drivers in Linux



Automated Whitebox 
Fuzz Testing

24



Whitebox fuzz testing

• Insight:  valid input gets us close to the 
interesting code paths

• Idea:  execute with valid input, record 
constraints that were made along the way

• Systematically negate these constraints 
one-by-one, and observe the results

25



Example

• With input “good”, we collect the 
constraints i0 ≠ b, i1 ≠ a, i2 ≠ d, i3 ≠ !

• Generate all inputs that don’t match this, 
choose one to use as next input, repeat

26

der test is huge and because symbolic execution, constraint
generation, and constraint solving are necessarily impre-
cise. (See Section 2 for various reasons of why the latter
is the case.) Therefore, we are forced to explore practical
tradeoffs, and this paper presents what we believe is a par-
ticular sweet spot. Indeed, our specific approach has been
remarkably effective in finding new defects in large applica-
tions that were previously well-tested. In fact, our algorithm
finds so many defect occurrences that we must address the
defect triage problem (see Section 4), which is common in
static program analysis and blackbox fuzzing, but has not
been faced until now in the context of dynamic test genera-
tion [16, 7, 31, 24, 22, 18]. Another novelty of our approach
is that we test larger applications than previously done in
dynamic test generation [16, 7, 31].
We have implemented this approach in SAGE, short for

Scalable, Automated, Guided Execution, a whole-program
whitebox file fuzzing tool for x86 Windows applications.
While our current tool focuses on file-reading applications,
the principles also apply to network-facing applications. As
argued above, SAGE is capable of finding bugs that are be-
yond the reach of blackbox fuzzers. For instance, without
any format-specific knowledge, SAGE detects the critical
MS07-017 ANI vulnerability, which was missed by exten-
sive blackbox fuzzing and static analysis. Our work makes
three main contributions:

• Section 2 introduces a new search algorithm for sys-
tematic test generation that is optimized for large ap-
plications with large input files and exhibiting long ex-
ecution traces where the search is bound to be incom-
plete;

• Section 3 discusses the implementation of SAGE: the
engineering choices behind its symbolic execution al-
gorithm and the key optimization techniques enabling
it to scale to program traces with hundreds of millions
of instructions;

• Section 4 describes our experience with SAGE: we
give examples of discovered defects and discuss the
results of various experiments.

2 A Whitebox Fuzzing Algorithm

2.1 Background: Dynamic Test Generation

Consider the program shown in Figure 1. This program
takes 4 bytes as input and contains an error when the value
of the variable cnt is greater than or equal to 3 at the end
of the function top. Running the program with random
values for the 4 input bytes is unlikely to discover the error:
there are 5 values leading to the error out of 2(8∗4) possible
values for 4 bytes, i.e., a probability of about 1/230 to hit
the error with random testing, including blackbox fuzzing.

void top(char input[4]) {
int cnt=0;
if (input[0] == ’b’) cnt++;
if (input[1] == ’a’) cnt++;
if (input[2] == ’d’) cnt++;
if (input[3] == ’!’) cnt++;
if (cnt >= 3) abort(); // error

}

Figure 1. Example of program.

This problem is typical of random testing: it is difficult to
generate input values that will drive the program through all
its possible execution paths.
In contrast, whitebox dynamic test generation can easily

find the error in this program: it consists in executing the
program starting with some initial inputs, performing a dy-
namic symbolic execution to collect constraints on inputs
gathered from predicates in branch statements along the ex-
ecution, and then using a constraint solver to infer variants
of the previous inputs in order to steer the next executions
of the program towards alternative program branches. This
process is repeated until a given specific program statement
or path is executed [22, 18], or until all (or many) feasible
program paths of the program are exercised [16, 7].
For the example above, assume we start running the

function top with the initial 4-letters string good. Fig-
ure 2 shows the set of all feasible program paths for the
function top. The leftmost path represents the first run of
the program on input good and corresponds to the program
path ρ including all 4 else-branches of all conditional if-
statements in the program. The leaf for that path is labeled
with 0 to denote the value of the variable cnt at the end of
the run. Intertwined with the normal execution, a symbolic
execution collects the predicates i0 != b, i1 != a, i2 != d

and i3 != ! according to how the conditionals evaluate, and
where i0, i1, i2 and i3 are symbolic variables that represent
the values of the memory locations of the input variables
input[0], input[1], input[2] and input[3],
respectively.
The path constraint φρ = 〈i0 != b, i1 != a, i2 != d, i3 !=

!〉 represents an equivalence class of input vectors, namely
all the input vectors that drive the program through the
path that was just executed. To force the program through
a different equivalence class, one can calculate a solution
to a different path constraint, say, 〈i0 != b, i1 != a, i2 !=
d, i3 = !〉 obtained by negating the last predicate of the cur-
rent path constraint. A solution to this path constraint is
(i0 = g, i1 = o, i2 = o, i3 = !). Running the program
top with this new input goo! exercises a new program
path depicted by the second leftmost path in Figure 2. By
repeating this process, the set of all 16 possible execution



Search space

27

bad!
0 1 1 1 12 2 3 3 32 2 2 2 3 4

good goo! godd god! gaod gao! gadd gad! bood boo! bodd bod! baod bao! badd

Figure 2. Search space for the example of Fig-
ure 1 with the value of the variable cnt at the
end of each run and the corresponding input
string.

paths of this program can be exercised. If this systematic
search is performed in depth-first order, these 16 executions
are explored from left to right on the Figure. The error is
then reached for the first time with cnt==3 during the 8th
run, and full branch/block coverage is achieved after the 9th
run.

2.2 Limitations

Systematic dynamic test generation [16, 7] as briefly de-
scribed above has two main limitations.
Path explosion: systematically executing all feasible

program paths does not scale to large, realistic programs.
Path explosion can be alleviated by performing dynamic
test generation compositionally [14], by testing functions
in isolation, encoding test results as function summaries ex-
pressed using function input preconditions and output post-
conditions, and then re-using those summaries when testing
higher-level functions. Although the use of summaries in
software testing seems promising, achieving full path cov-
erage when testing large applications with hundreds of mil-
lions of instructions is still problematic within a limited
search period, say, one night, even when using summaries.
Imperfect symbolic execution: symbolic execution of

large programs is bound to be imprecise due to complex
program statements (pointer manipulations, arithmetic op-
erations, etc.) and calls to operating-system and library
functions that are hard or impossible to reason about sym-
bolically with good enough precision at a reasonable cost.
Whenever symbolic execution is not possible, concrete val-
ues can be used to simplify constraints and carry on with
a simplified, partial symbolic execution [16]. Randomiza-
tion can also help by suggesting concrete values whenever

1 Search(inputSeed){
2 inputSeed.bound = 0;
3 workList = {inputSeed};
4 Run&Check(inputSeed);
5 while (workList not empty) {//new children
6 input = PickFirstItem(workList);
7 childInputs = ExpandExecution(input);
8 while (childInputs not empty) {
9 newInput = PickOneItem(childInputs);
10 Run&Check(newInput);
11 Score(newInput);
12 workList = workList + newInput;
13 }
14 }
15 }

Figure 3. Search algorithm.

automated reasoning is difficult. Whenever an actual exe-
cution path does not match the program path predicted by
symbolic execution for a given input vector, we say that a
divergence has occurred. A divergence can be detected by
recording a predicted execution path as a bit vector (one bit
for each conditional branch outcome) and checking that the
expected path is actually taken in the subsequent test run.

2.3 Generational Search

We now present a new search algorithm that is designed
to address these fundamental practical limitations. Specifi-
cally, our algorithm has the following prominent features:

• it is designed to systematically yet partially explore the
state spaces of large applications executed with large
inputs (thousands of symbolic variables) and with very
deep paths (hundreds of millions of instructions);

• it maximizes the number of new tests generated from
each symbolic execution (which are long and expen-
sive in our context) while avoiding any redundancy in
the search;

• it uses heuristics to maximize code coverage as quickly
as possible, with the goal of finding bugs faster;

• it is resilient to divergences: whenever divergences oc-
cur, the search is able to recover and continue.

This new search algorithm is presented in two parts in
Figures 3 and 4. The main Search procedure of Figure 3
is mostly standard. It places the initial input inputSeed
in a workList (line 3) and runs the program to check
whether any bugs are detected during the first execution
(line 4). The inputs in the workList are then pro-
cessed (line 5) by selecting an element (line 6) and ex-
panding it (line 7) to generate new inputs with the function



Limitations

28

• Path explosion

• n constraints leads to 2n paths to explore

• Must prioritize

• Imperfect symbolic execution

• Calls to libraries/OS, pointer tricks, etc. 
make perfect symbolic execution difficult



Generational search

• BFS with a heuristic to maximize block coverage

• Score returns the number of new blocks covered

29

bad!
0 1 1 1 12 2 3 3 32 2 2 2 3 4

good goo! godd god! gaod gao! gadd gad! bood boo! bodd bod! baod bao! badd

Figure 2. Search space for the example of Fig-
ure 1 with the value of the variable cnt at the
end of each run and the corresponding input
string.

paths of this program can be exercised. If this systematic
search is performed in depth-first order, these 16 executions
are explored from left to right on the Figure. The error is
then reached for the first time with cnt==3 during the 8th
run, and full branch/block coverage is achieved after the 9th
run.

2.2 Limitations

Systematic dynamic test generation [16, 7] as briefly de-
scribed above has two main limitations.
Path explosion: systematically executing all feasible

program paths does not scale to large, realistic programs.
Path explosion can be alleviated by performing dynamic
test generation compositionally [14], by testing functions
in isolation, encoding test results as function summaries ex-
pressed using function input preconditions and output post-
conditions, and then re-using those summaries when testing
higher-level functions. Although the use of summaries in
software testing seems promising, achieving full path cov-
erage when testing large applications with hundreds of mil-
lions of instructions is still problematic within a limited
search period, say, one night, even when using summaries.
Imperfect symbolic execution: symbolic execution of

large programs is bound to be imprecise due to complex
program statements (pointer manipulations, arithmetic op-
erations, etc.) and calls to operating-system and library
functions that are hard or impossible to reason about sym-
bolically with good enough precision at a reasonable cost.
Whenever symbolic execution is not possible, concrete val-
ues can be used to simplify constraints and carry on with
a simplified, partial symbolic execution [16]. Randomiza-
tion can also help by suggesting concrete values whenever

1 Search(inputSeed){
2 inputSeed.bound = 0;
3 workList = {inputSeed};
4 Run&Check(inputSeed);
5 while (workList not empty) {//new children
6 input = PickFirstItem(workList);
7 childInputs = ExpandExecution(input);
8 while (childInputs not empty) {
9 newInput = PickOneItem(childInputs);
10 Run&Check(newInput);
11 Score(newInput);
12 workList = workList + newInput;
13 }
14 }
15 }

Figure 3. Search algorithm.

automated reasoning is difficult. Whenever an actual exe-
cution path does not match the program path predicted by
symbolic execution for a given input vector, we say that a
divergence has occurred. A divergence can be detected by
recording a predicted execution path as a bit vector (one bit
for each conditional branch outcome) and checking that the
expected path is actually taken in the subsequent test run.

2.3 Generational Search

We now present a new search algorithm that is designed
to address these fundamental practical limitations. Specifi-
cally, our algorithm has the following prominent features:

• it is designed to systematically yet partially explore the
state spaces of large applications executed with large
inputs (thousands of symbolic variables) and with very
deep paths (hundreds of millions of instructions);

• it maximizes the number of new tests generated from
each symbolic execution (which are long and expen-
sive in our context) while avoiding any redundancy in
the search;

• it uses heuristics to maximize code coverage as quickly
as possible, with the goal of finding bugs faster;

• it is resilient to divergences: whenever divergences oc-
cur, the search is able to recover and continue.

This new search algorithm is presented in two parts in
Figures 3 and 4. The main Search procedure of Figure 3
is mostly standard. It places the initial input inputSeed
in a workList (line 3) and runs the program to check
whether any bugs are detected during the first execution
(line 4). The inputs in the workList are then pro-
cessed (line 5) by selecting an element (line 6) and ex-
panding it (line 7) to generate new inputs with the function

1 ExpandExecution(input) {
2 childInputs = {};
3 // symbolically execute (program,input)
4 PC = ComputePathConstraint(input);
5 for (j=input.bound; j < |PC|; j++) {
6 if((PC[0..(j-1)] and not(PC[j]))

has a solution I){
7 newInput = input + I;
8 newInput.bound = j;
9 childInputs = childInputs + newInput;
10 }
11 return childInputs;
12 }

Figure 4. Computing new children.

ExpandExecution described later in Figure 4. For each
of those childInputs, the program under test is run with
that input. This execution is checked for errors (line 10) and
is assigned a Score (line 11), as discussed below, before
being added to the workList (line 12) which is sorted by
those scores.
The main originality of our search algorithm is in the

way children are expanded as shown in Figure 4. Given an
input (line 1), the function ExpandExecution sym-
bolically executes the program under test with that input
and generates a path constraint PC (line 4) as defined ear-
lier. PC is a conjunction of |PC| constraints, each cor-
responding to a conditional statement in the program and
expressed using symbolic variables representing values of
input parameters (see [16, 7]). Then, our algorithm at-
tempts to expand every constraint in the path constraint
(at a position j greater or equal to a parameter called
input.bound which is initially 0). This is done by
checking whether the conjunction of the part of the path
constraint prior to the jth constraint PC[0..(j-1)] and
of the negation of the jth constraint not(PC[j]) is sat-
isfiable. If so, a solution I to this new path constraint is
used to update the previous solution input while values of
input parameters not involved in the path constraint are pre-
served (this update is denoted by input + I on line 7).
The resulting new input value is saved for future evaluation
(line 9).
In other words, starting with an initial input

inputSeed and initial path constraint PC, the new
search algorithm depicted in Figures 3 and 4 will attempt
to expand all |PC| constraints in PC, instead of just the
last one with a depth-first search, or the first one with a
breadth-first search. To prevent these child sub-searches
from redundantly exploring overlapping parts of the search
space, a parameter bound is used to limit the backtracking
of each sub-search above the branch where the sub-search
started off its parent. Because each execution is typically

expanded with many children, we call such a search order
a generational search.
Consider again the program shown in Figure 1. Assum-

ing the initial input is the 4-letters string good, the leftmost
path in the tree of Figure 2 represents the first run of the
program on that input. From this parent run, a generational
search generates four first-generation children which cor-
respond to the four paths whose leafs are labeled with 1.
Indeed, those four paths each correspond to negating one
constraint in the original path constraint of the leftmost par-
ent run. Each of those first generation execution paths can
in turn be expanded by the procedure of Figure 4 to gen-
erate (zero or more) second-generation children. There are
six of those and each one is depicted with a leaf label of
2 to the right of their (first-generation) parent in Figure 2.
By repeating this process, all feasible execution paths of the
function top are eventually generated exactly once. For
this example, the value of the variable cnt denotes exactly
the generation number of each run.
Since the procedure ExpandExecution of Figure 4

expands all constraints in the current path constraint (below
the current bound) instead of just one, it maximizes the
number of new test inputs generated from each symbolic
execution. Although this optimization is perhaps not sig-
nificant when exhaustively exploring all execution paths of
small programs like the one of Figure 1, it is important when
symbolic execution takes a long time, as is the case for large
applications where exercising all execution paths is virtu-
ally hopeless anyway. This point will be further discussed
in Section 3 and illustrated with the experiments reported in
Section 4.
In this scenario, we want to exploit as much as possi-

ble the first symbolic execution performed with an initial
input and to systematically explore all its first-generation
children. This search strategy works best if that initial input
is well formed. Indeed, it will be more likely to exercise
more of the program’s code and hence generate more con-
straints to be negated, thus more children, as will be shown
with experiments in Section 4. The importance given to the
first input is similar to what is done with traditional, black-
box fuzz testing, hence our use of the term whitebox fuzzing
for the search technique introduced in this paper.
The expansion of the children of the first parent run is

itself prioritized by using a heuristic to attempt to maxi-
mize block coverage as quickly as possible, with the hope
of finding more bugs faster. The function Score (line 11
of Figure 3) computes the incremental block coverage ob-
tained by executing the newInput compared to all previ-
ous runs. For instance, a newInput that triggers an execu-
tion uncovering 100 new blocks would be assigned a score
of 100. Next, (line 12), the newInput is inserted into the
workList according to its score, with the highest scores
placed at the head of the list. Note that all children compete



ANI bug

30

the preceding tag. To achieve constant space behavior, con-
straint subsumption must be performed in conjunction with
constant folding during tag creation: (t−c)−1 = t−(c+1).
The net effect of the algorithm with constraint subsumption
and constant folding on the above fragment is the path con-
straint with two constraints t0−(k−1) > 0 and t0−k ≤ 0.
Another hurdle arises from multi-byte tags. Consider the

following loop which is similar to the loop above except
that the byte-sized register cl is replaced by the word-sized
register cx.

mov cx, word [...]
dec cx # Decrement cx
ja 2 # Jump if cx > 0

Assuming that the two bytes read by the mov instruction are
mapped to tags t′0 and t′′0 , this fragment yields constraints
s1 > 0, . . ., sk−1 > 0, and sk ≤ 0where si+1 = 〈t′i, t

′′

i 〉−1
with t′i = subtag(si, 0) and t′′i = subtag(si, 1) for
i ∈ {1 . . . k}. Constant folding becomes hard because each
loop iteration introduces syntactically unique but semanti-
cally redundant word-size sequence tags. SAGE solves this
with the help of sequence tag simplification which rewrites
〈subtag(t, 0), subtag(t, 1)〉 into t avoiding duplicating
equivalent tags and enabling constant folding.
Constraint subsumption, constant folding, and sequence

tag simplification are sufficient to guarantee constant
space replay of the above fragment generating constraints
〈t′0, t

′′

0〉 − (k − 1) > 0 and 〈t′0, t
′′

0〉 − k ≤ 0. More gen-
erally, these three simple techniques enable SAGE to effec-
tively fuzz real-world structured-file-parsing applications in
which the input-bound loop pattern is pervasive.

4 Experiments

We first describe our initial experiences with SAGE, in-
cluding several bugs found by SAGE that were missed by
blackbox fuzzing efforts. Inspired by these experiences, we
pursue a more systematic study of SAGE’s behavior on two
media-parsing applications. In particular, we focus on the
importance of the starting input file for the search, the ef-
fect of our generational search vs. depth-first search, and
the impact of our block coverage heuristic. In some cases,
we withold details concerning the exact application tested
because the bugs are still in the process of being fixed.

4.1 Initial Experiences

MS07-017. On 3 April 2007, Microsoft released an out of
band critical security patch for code that parses ANI format
animated cursors. The vulnerability was originally reported
to Microsoft in December 2006 by Alex Sotirov of Deter-
mina Security Research, then made public after exploit code

RIFF...ACONLIST
B...INFOINAM....
3D Blue Alternat
e v1.1..IART....
................
1996..anih$...$.
................
................
..rate..........
..........seq ..
................
..LIST....framic
on......... ..

RIFF...ACONB
B...INFOINAM....
3D Blue Alternat
e v1.1..IART....
................
1996..anih$...$.
................
................
..rate..........
..........seq ..
................
..anih....framic
on......... ..

Figure 5. On the left, an ASCII rendering of
a prefix of the seed ANI file used for our
search. On the right, the SAGE-generated
crash for MS07-017. Note how the SAGE test
case changes the LIST to an additional anih
record on the next-to-last line.

appeared in the wild [32]. This was only the third such out-
of-band patch released by Microsoft since January 2006,
indicating the seriousness of the bug. The Microsoft SDL
Policy Weblog states that extensive blackbox fuzz testing of
this code failed to uncover the bug, and that existing static
analysis tools are not capable of finding the bug without ex-
cessive false positives [20]. SAGE, in contrast, synthesizes
a new input file exhibiting the bug within hours of starting
from a well-formed ANI file.
In more detail, the vulnerability results from an incom-

plete patch to MS05-006, which also concerned ANI pars-
ing code. The root cause of this bug was a failure to vali-
date a size parameter read from an anih record in an ANI
file. Unfortunately, the patch for MS05-006 is incomplete.
Only the length of the first anih record is checked. If a file
has an initial anih record of 36 bytes or less, the check is
satisfied but then an icon loading function is called on all
anih records. The length fields of the second and subse-
quent records are not checked, so any of these records can
trigger memory corruption.
Therefore, a test case needs at least two anih records

to trigger the MS07-017 bug. The SDL Policy Weblog at-
tributes the failure of blackbox fuzz testing to find MS07-
017 to the fact that all of the seed files used for blackbox
testing had only one anih record, and so none of the test
cases generated would break the MS05-006 patch. While of
course one could write a grammar that generates such test
cases for blackbox fuzzing, this requires effort and does not
generalize beyond the single ANI format.
In contrast, SAGE can generate a crash exhibitingMS07-

• Failure to check the length 
of the second anih record

• Was blackbox fuzz tested, 
but no test case had more 
than one anih

• Zero-day exploit of this bug 
was used in the wild



Crash triage

31

• Idea:  most found bugs can be uniquely 
identified by the call stack at time of error

• Crashes are bucketed by stack hash, which 
includes information about the functions on 
the call stack, and the address of the 
faulting instruction



Results

32

Media 1: wff-1 wff-1nh wff-2 wff-2nh wff-3 wff-3nh wff-4 wff-4nh
NULL 1 (46) 1 (32) 1(23) 1(12) 1(32) 1(26) 1(13) 1(1)
ReadAV 1 (40) 1 (16) 2(32) 2(13) 7(94) 4(74) 6(15) 5(45)
WriteAV 0 0 0 0 0 1(1) 1(3) 1(1)
SearchTime 10h7s 10h11s 10h4s 10h20s 10h7s 10h12s 10h34s 9h29m2s

AnalysisTime(s) 5625 4388 16565 11729 5082 6794 5545 7671
AnalysisTasks 564 545 519 982 505 752 674 878
BlocksAtStart 27659 26962 27635 26955 27626 27588 26812 26955
BlocksAdded 701 50 865 111 96 804 910 96
NumTests 6890 7252 6091 14400 6573 10669 8668 15280

TestsToLastCrash 6845 7242 5315 13616 6571 10563 6847 15279
TestsToLastUnique 168 5860 266 13516 5488 2850 2759 1132

MaxGen 6 6 6 8 6 7 7 8
GenToLastUnique 3 (50%) 5 (83%) 2 (33%) 7 (87.5%) 4 (66%) 3 (43%) 4 (57%) 3 (37.5%)
Mean Changes 1 1 1 1 1 1 1 1
Media 1: wff-5 wff-5nh bogus-1 bogus-1nh bogus-2 bogus-3 bogus-4 bogus-5
NULL 1(25) 1(15) 0 0 0 0 0 0
ReadAV 3(44) 3(56) 3(3) 1(1) 0 0 0 0
WriteAV 0 0 0 0 0 0 0 0
SearchTime 10h8s 10h4s 10h8s 10h14s 10h29s 9h47m15s 5m23s 5m39s

AnalysisTime(s) 21614 22005 11640 13156 3885 4480 214 234
AnalysisTasks 515 394 1546 1852 502 495 35 35
BlocksAtStart 27913 27680 27010 26965 27021 27022 24691 24692
BlocksAdded 109 113 130 60 61 74 57 41
NumTests 4186 2994 12190 15594 13945 13180 35 35

TestsToLastCrash 4175 2942 1403 11474 NA NA NA NA
TestsToLastUnique 1504 704 1403 11474 NA NA NA NA

MaxGen 5 4 14 13 8 9 9 9
GenToLastUnique 3 (60%) 3 (75%) 10 (71%) 11 (84%) NA NA NA NA
Mean Changes 1 1 1 1 1 1 1 1
Media 2: wff-1 wff-1nh wff-2 wff-3 wff-3nh wff-4 wff-4nh wff-5 wff-5nh bogus1
NULL 0 0 0 0 0 0 0 0 0 0
ReadAV 4(9) 4(9) 0 4(15) 4(14) 4(6) 3(3) 5(14) 4(12) 0
WriteAV 0 0 0 0 0 0 0 1(1) 0 0
SearchTime 10h12s 10h5s 10h6s 10h17s 10h1s 10h3s 10h7s 10h3s 10h6s 10h13s

AnalysisTime(s) 3457 3564 1517 9182 8513 1510 2195 10522 14386 14454
AnalysisTasks 3 3 1 6 7 2 2 6 6 1352
BlocksAtStart 48494 48486 51217 41726 41746 48729 48778 41917 42041 20008
BlocksAdded 10407 10633 12329 9564 8643 10379 10022 8980 8746 14743
NumTests 1045 1014 777 1253 1343 1174 948 1360 980 4165

TestsToLastCrash 1042 989 NA 1143 1231 1148 576 1202 877 NA
TestsToLastUnique 461 402 NA 625 969 658 576 619 877 NA

MaxGen 2 2 1 3 2 2 2 3 2 14
GenToLastUnique 2 (100%) 2 (100%) NA 2 (66%) 2 (100%) 2 (100%) 1 (50%) 2 2 NA
Mean Changes 3 3 4 4 3.5 5 5.5 4 4 2.9

Figure 10. Search statistics. For each search, we report the number of crashes of each type: the
first number is the number of distinct buckets, while the number in parentheses is the total number
of crashing test cases. We also report the total search time (SearchTime), the total time spent in
symbolic execution (AnalysisTime), the number of symbolic execution tasks (AnalysisTasks), blocks
covered by the initial file (BlocksAtStart), new blocks discovered during the search (BlocksAdded),
the total number of tests (NumTests), the test at which the last crash was found (TestsToLastCrash),
the test at which the last unique bucket was found (TestsToLastUnique), the maximum generation
reached (MaxGen), the generation at which the last unique bucket was found (GenToLastUnique),
and the mean number of file positions changed for each generated test case (Mean Changes).

Media 1: wff-1 wff-1nh wff-2 wff-2nh wff-3 wff-3nh wff-4 wff-4nh
NULL 1 (46) 1 (32) 1(23) 1(12) 1(32) 1(26) 1(13) 1(1)
ReadAV 1 (40) 1 (16) 2(32) 2(13) 7(94) 4(74) 6(15) 5(45)
WriteAV 0 0 0 0 0 1(1) 1(3) 1(1)
SearchTime 10h7s 10h11s 10h4s 10h20s 10h7s 10h12s 10h34s 9h29m2s

AnalysisTime(s) 5625 4388 16565 11729 5082 6794 5545 7671
AnalysisTasks 564 545 519 982 505 752 674 878
BlocksAtStart 27659 26962 27635 26955 27626 27588 26812 26955
BlocksAdded 701 50 865 111 96 804 910 96
NumTests 6890 7252 6091 14400 6573 10669 8668 15280

TestsToLastCrash 6845 7242 5315 13616 6571 10563 6847 15279
TestsToLastUnique 168 5860 266 13516 5488 2850 2759 1132

MaxGen 6 6 6 8 6 7 7 8
GenToLastUnique 3 (50%) 5 (83%) 2 (33%) 7 (87.5%) 4 (66%) 3 (43%) 4 (57%) 3 (37.5%)
Mean Changes 1 1 1 1 1 1 1 1
Media 1: wff-5 wff-5nh bogus-1 bogus-1nh bogus-2 bogus-3 bogus-4 bogus-5
NULL 1(25) 1(15) 0 0 0 0 0 0
ReadAV 3(44) 3(56) 3(3) 1(1) 0 0 0 0
WriteAV 0 0 0 0 0 0 0 0
SearchTime 10h8s 10h4s 10h8s 10h14s 10h29s 9h47m15s 5m23s 5m39s

AnalysisTime(s) 21614 22005 11640 13156 3885 4480 214 234
AnalysisTasks 515 394 1546 1852 502 495 35 35
BlocksAtStart 27913 27680 27010 26965 27021 27022 24691 24692
BlocksAdded 109 113 130 60 61 74 57 41
NumTests 4186 2994 12190 15594 13945 13180 35 35

TestsToLastCrash 4175 2942 1403 11474 NA NA NA NA
TestsToLastUnique 1504 704 1403 11474 NA NA NA NA

MaxGen 5 4 14 13 8 9 9 9
GenToLastUnique 3 (60%) 3 (75%) 10 (71%) 11 (84%) NA NA NA NA
Mean Changes 1 1 1 1 1 1 1 1
Media 2: wff-1 wff-1nh wff-2 wff-3 wff-3nh wff-4 wff-4nh wff-5 wff-5nh bogus1
NULL 0 0 0 0 0 0 0 0 0 0
ReadAV 4(9) 4(9) 0 4(15) 4(14) 4(6) 3(3) 5(14) 4(12) 0
WriteAV 0 0 0 0 0 0 0 1(1) 0 0
SearchTime 10h12s 10h5s 10h6s 10h17s 10h1s 10h3s 10h7s 10h3s 10h6s 10h13s

AnalysisTime(s) 3457 3564 1517 9182 8513 1510 2195 10522 14386 14454
AnalysisTasks 3 3 1 6 7 2 2 6 6 1352
BlocksAtStart 48494 48486 51217 41726 41746 48729 48778 41917 42041 20008
BlocksAdded 10407 10633 12329 9564 8643 10379 10022 8980 8746 14743
NumTests 1045 1014 777 1253 1343 1174 948 1360 980 4165

TestsToLastCrash 1042 989 NA 1143 1231 1148 576 1202 877 NA
TestsToLastUnique 461 402 NA 625 969 658 576 619 877 NA

MaxGen 2 2 1 3 2 2 2 3 2 14
GenToLastUnique 2 (100%) 2 (100%) NA 2 (66%) 2 (100%) 2 (100%) 1 (50%) 2 2 NA
Mean Changes 3 3 4 4 3.5 5 5.5 4 4 2.9

Figure 10. Search statistics. For each search, we report the number of crashes of each type: the
first number is the number of distinct buckets, while the number in parentheses is the total number
of crashing test cases. We also report the total search time (SearchTime), the total time spent in
symbolic execution (AnalysisTime), the number of symbolic execution tasks (AnalysisTasks), blocks
covered by the initial file (BlocksAtStart), new blocks discovered during the search (BlocksAdded),
the total number of tests (NumTests), the test at which the last crash was found (TestsToLastCrash),
the test at which the last unique bucket was found (TestsToLastUnique), the maximum generation
reached (MaxGen), the generation at which the last unique bucket was found (GenToLastUnique),
and the mean number of file positions changed for each generated test case (Mean Changes).



Results

33

Figure 8. Histograms of test cases and of crashes by generation for Media 1 seeded with wff-4.

trast, while a generational search seeded with wff-2 found
no crashes, a generational search seeded with wff-3 found
15 crashing files in 4 buckets. Furthermore, the depth-first
searches were inferior to the generational searches in code
coverage: the wff-2 generational search started at 51217
blocks and added 12329, while the depth-first search started
with 51476 and added only 398. For wff-3, a generational
search started at 41726 blocks and added 9564, while the
depth-first search started at 41703 blocks and added 244.
These different initial block coverages stem from the non-
determinism noted above, but the difference in blocks added
is much larger than the difference in starting coverage. The
limitations of depth-first search regarding code coverage are
well known (e.g., [23]) and are due to the search being too
localized. In contrast, a generational search explores alter-
native execution branches at all depths, simultaneously ex-
ploring all the layers of the program. Finally, we saw that a
much larger percentage of the search time is spent in sym-
bolic execution for depth-first search than for generational
search, because each test case requires a new symbolic ex-
ecution task. For example, for the Media 2 search seeded
with wff-3, a depth-first search spent 10 hours and 27
minutes in symbolic execution for 18 test cases generated,
out of a total of 10 hours and 35 minutes. Note that any
other search algorithm that generates a single new test from
each symbolic execution (like a breadth-first search) has a
similar execution profile where expensive symbolic execu-
tions are poorly leveraged, hence resulting in relatively few
tests being executed given a fixed time budget.

Divergences are common. Our basic test setup did not
measure divergences, so we ran several instrumented test
cases to measure the divergence rate. In these cases, we of-
ten observed divergence rates of over 60%. This may be due
to several reasons: in our experimental setup, we concretize
all non-linear operations (such as multiplication, division,
and bitwise arithmetic) for efficiency, there are several x86
instructions we still do not emulate, we do not model sym-
bolic dereferences of pointers, tracking symbolic variables
may be incomplete, and we do not control all sources of

nondeterminism as mentioned above. Despite this, SAGE
was able to find many bugs in real applications, showing
that our search technique is tolerant of such divergences.
Bogus files find few bugs. We collected crash data from
our well-formed and bogus seeded SAGE searches. The
bugs found by each seed file are shown, bucketed by stack
hash, in Figure 7. Out of the 10 files used as seeds for
SAGE searches on Media 1, 6 found at least one crash-
ing test case during the search, and 5 of these 6 seeds were
well-formed. Furthermore, all the bugs found in the search
seeded with bogus-1were also found by at least one well-
formed file. For SAGE searches on Media 2, out of the 6
seed files tested, 4 found at least one crashing test case, and
all were well-formed. Hence, the conventional wisdom that
well-formed files should be used as a starting point for fuzz
testing applies to our whitebox approach as well.
Different files find different bugs. Furthermore, we ob-
served that no single well-formed file found all distinct bugs
for either Media 1 or Media 2. This suggests that using a
wide variety of well-formed files is important for finding
distinct bugs as each search is incomplete.
Bugs found are shallow. For each seed file, we collected
the maximum generation reached by the search. We then
looked at which generation the search found the last of its
unique crash buckets. For the Media 1 searches, crash-
finding searches seeded with well-formed files found all
unique bugs within 4 generations, with a maximum num-
ber of generations between 5 and 7. Therefore, most of the
bugs found by these searches are shallow— they are reach-
able in a small number of generations. The crash-finding
Media 2 searches reached a maximum generation of 3, so
we did not observe a trend here.
Figure 8 shows histograms of both crashing and non-

crashing (“NoIssues”) test cases by generation for Media
1 seeded with wff-4. We can see that most tests exe-
cuted were of generations 4 to 6, yet all unique bugs can be
found in generations 1 to 4. The number of test cases tested
with no issues in later generations is high, but these new
test cases do not discover distinct new bugs. This behav-

Most crashes found within a few generations



Discussion

34

• Generational search is better than DFS

• Bogus files find few bugs

• Different files find different bugs

• Block coverage heuristic doesn’t help much

• Generation much better heuristic



Comparison

• Generational search vs. modified BFS

• Bad input is usually only a few mutations 
away from good

• Incomplete search, but can effectively find 
bugs in large applications without source

• EXE closer to sound - how much does this 
matter?

35


