Custom type-checking for
programming, teaching, and
research

Michael D. Ernst
University of Washington
& Amazon Web Services

u http://CheckerFramework.org/

Motivation

Mardla
Yewn (5 Bocomars

* Planner Phus

- Be En

Teas Wndew Heb

03 X [o R e rs. i merviet e telbin o = 10 T30
L. Q000

o i rore ilockvets ., modesrg . LetestDulds

& Hoese NS +

Nederland

@ Q30 d m 13:29

Systemn Status

Dashboard

+ Application Control

+ HTTPS Decryption

+ Advanced Threat Protection

+ HTTP Inspection

+ Data Loss Prevention

+ Applets and Activex

- UR?FEring

Policies

Settings

Reports

+ Updates

Notifications

+ Administration

[T Exception report

TR java.lang. NulPointerException

s[aglayae)y) The server encountered an internal err

Exception

org.apache. jasper.JasperExcepton: java.lang.NullPointerException
org.apache. jasper.serylet.JspServletlirapper.service (JspServiletlirapper. java: 432)
wvlet.JspServlet.servicedspFile (JspServlet. java:313)

org.apache. jasper.s
org.apache. jasper.

rvlet.JspServlet.service (JspServlet. java:260)

javax.servlet.httd.HttpServliet.service (HttpServlet. java: 717)

.java.lang.NullPointerException

Java. lang.NullFO1NTEerLXceprion
org.apache.jsp.urlf 005fsection 00Sfpolicy 005frule jsp. jspService(urlf 00Sfsection 005fpolicy 00Sfrule jsp.java:742)

org.apache. jasper.runtime.HttpJspBase.service (HttpJspBase. java:70)

javax.servlet.http.HttpServlet.service (HttpServlet. java: 717)
org.apache. jasper.servlet.JspServletlirapper.service (JspServletlrapper. java:388)
org.apache. jasper.servlet.JspServlet.servicedspFile (JspServlet. java:313)
org.apache. jasper.servlet.JspServlet.service (JspServlet. java:260)
javax.servlet.http.HttpServlet.service (HttpServlet. java: 717)
com.trend. iwss.servlets.filters.CSRFGuardFilter.doFilter (C3RFGuardFilter. java:73)
com.trend. ivss.servlets.filters.AuthFilter.doFilter (AuthFilter.java:377)

ter.java:73)
77

Java's type system is too weak

Type checking prevents many errors
int 1 = "hello";

Type checking doesn't prevent enough errors

System.console().readlLine();

Java's type system is too weak

Type checking prevents many errors
int 1 = "hello";

1L i 1

NullPointerException

Type checking ¢]ors

System.console().readLine();

Solution: Pluggable type-checking

Write stronger types (specifications)

. Vverification reveals errors
. Static analysis: no effect on execution

Implementation: the Checker Framework

. used at Amazon, Google, Uber, startups, ...
« compatible: uses standard Java syntax

Why use pluggable type-checking?

« For programming
. For teaching
. For research

Benefits for programmers

Find bugs in programs
- Guarantee the absence of errors
Improve documentation
- Improve code structure & maintainability
Aid compilers, optimizers, and analysis tools
- E.g., could reduce number of run-time checks

Possible negatives:
- Must write the types (or use type inference)
- False positives are possible (can be suppressed)

Benefits for students

Teach students about specifications

Excite students about correctness & verification
Impose requirements on student code

Expose students to research

Results: higher grades; spent no more time

Researchers can build new analyses

Quickly prototype your analysis ideas
Framework handles full Java
generics, type inference, inner classes, ...

Enables large-scale experiments
Increases impact

(Building new analyses is the focus of this talk.)

Prevent null pointer exceptions

Java 8 introduced the Optional<T> type

. Wrapper; content may be present or absent
« Constructor: of (T value)
. Methods: boolean isPresent(), T get()

Optional<String> maidenNamej;

Optional reminds you to check

Without Optional: With Optional:

possible possible
NullPointerException NoSuchElementException

String mN Optional<String> omName;

mName’equals(...); omName.get().equals(...);

if (mName != null) { if (omName.isPresent()) {
mName.equals(...); omName. uals(...);

} }

Complex rules for using Optional correctly!

possible
NullPointerException |

Y 4

How not to use Optional

Stuart Marks's rules:
1.

2.
3.
4

Other gu
Stephen
Dalorzo,

Never, ever, use null for an Optional variable or return value. |
Never use Optional.get() unless you can prove that the Optional is present
Prefer alternative APIs over Optional.isPresent() and Optional.get().

It's generall nal for the specific purpose of
chaining mef EL'S €nforce the

If an Optiond rules with a tool. |chain, or has an intermediate
result of Opt —_— X,

Avoid using Optional in fields, method parameters, and collections.
Don’t use an Optional to wrap any collection type (List, Set, Map). Instead,

use an empty collection to represent the absence of values.

http://docs.oracle.com/javase/8/docs/api/java/util/Optional.html#get--
http://docs.oracle.com/javase/8/docs/api/java/util/Optional.html#isPresent--
http://docs.oracle.com/javase/8/docs/api/java/util/Optional.html#get--

Enforce rules with a tool

Stuart Marks's rules:

1.

2.
3.
4

Never, ever, use null for an Optional variable or return value.

Never use Optional.get() unless you can prove that the Optional is present.
Prefer alternative APIs over Optional.isPresent() and Optional.get().

It's generally a bad idea to create an Optional for the specific purpose of
chaining methods from it to get a value.

If an Optional chain has a nested Optional chain, or has an intermediate
result of Optional, it's probably too complex.

Avoid using Optional in fields, method parameters, and collections.

Don’t use an Optional to wrap any collection type (List, Set, Map). Instead,
use an empty collection to represent the absence of values.

http://docs.oracle.com/javase/8/docs/api/java/util/Optional.html#get--
http://docs.oracle.com/javase/8/docs/api/java/util/Optional.html#isPresent--
http://docs.oracle.com/javase/8/docs/api/java/util/Optional.html#get--

Which rules to enforce with a tool

Stuart Marks's rules:

(1) Never, ever, use null for an Optional variable or return value.
@ Never use Optional.get() unless you can prove that the Optional is present.

These are dataflow or
type system properties.

@ Don’t use an Optional to wrap any collection type (List, Set, Map). Instead,
use an empty collection to represent the absence of values.

http://docs.oracle.com/javase/8/docs/api/java/util/Optional.html#get--
http://docs.oracle.com/javase/8/docs/api/java/util/Optional.html#isPresent--
http://docs.oracle.com/javase/8/docs/api/java/util/Optional.html#get--

. h € Heap — Addr > Obj
Define a type syste m : c ada = “Bebof N dbesse anilu]
o & 0Obj — *Type, Fields
— *T € ¥TType = OwnerAddr ClassId<*Type>
P & Program = Class, ClassId, Expz e Fiolas = Fieldld — Addr
Cls & Class = class ClassId<TVarI: _ |
extends ClassId<®Tyj . £ € 9 wnerAddr = AddrU {any,}
— — r .
{ Fieldld *Type; Met & Env = TVarld *Type; ParId Addr
°T & °Type = °NType | TVarld h,’T,eq ~ I, 0
°N & °NType := OM ClassId<®Type> T 11 ’
u € oM = h, T, e0 ~~ ho, io "°h7f o)Lz (8
mt € Meth = L= to).l2
MethSig ::= to #nulla OS-Read :
ho, T, es ~ ho,t h,*T,eq.f ~ h',¢
w & Purit = h! =hafwpg.fi=1
c mer) - 0S-Upd [)
S & SRR h,’T,eq.f=ez ~» 1,
C'Hep:No No = ug Cp<>
Expr .MethId<*Type>(Expr) | T, = fType(Co, £
new *Type | (*Type) Expr N y}; ([>'I,')
T ¢ SEnv ::= TVarld °NType; Parld ®Type S
GT-Upd—20 7# any rp(uo, T1)
GT-Read '~ eo:No fo 1: - ¢ I eo.f=e2 : No>T)
] it) ['F eo.f : Nol>f1ype(Co,)

hi Ly - dyn(‘N,h,’ 1)

hF e :dyn(®T,u,h(0)11)
SN=uy Cny<>

uy = this, = *T'(this)
free(®T) C dom(Cx) DYN

l —3 h s : dyn(®ND°T.h,T)
IT=y €0 FITI U CAT> FITP< U CCT> 2> HIT A T,
dom(C) =X free(®T) CXo X/

dyn(®T,,*T, (X' *T’;.)) = *T[¢/ /this, . /peer, ¢/rep, any,, /any,, ,*T/X,*T' /X’]

Define a type system (or any analysis)

1. Type hierarchy (subtyping)

2. Type rules (what operations are illegal)
3. Type introduction (type of new values)
4. Dataflow (run-time tests)

Main rule for the Optional type system:

e “Never use Optional.get() unless you can prove that the Optional is present.”

http://docs.oracle.com/javase/8/docs/api/java/util/Optional.html#get--

Define a type system

1
2
3
4

. Type hierarchy (subtyping)
. Type rules (what operations are illegal)
. Type introduction (type of new values)

. Dataflow (run-time tests)

1. Type hierarchy

Animal Obiject
Reptile Mammal List Number
Giraffe Human Integer Float

2 pieces of information:
e the types
e their relationships (lower = fewer values, more properties)

Type hierarchy for Optional

“Never use Optional.get() unless you can prove that the Optional is present.”

@MaybePresent

|

@Present

2 pieces of information:
e the types
e their relationships (lower = fewer values, more properties)

http://docs.oracle.com/javase/8/docs/api/java/util/Optional.html#get--

Type = type qualifier + Java basetype

@Pr*esen’E 9ptional<Str*ingz maidenName;

Type qualifier Java basetype
B Type > @MaybePresent
Optional<String>
Default qualifier = @MaybePresent @Present
Optional<String>

® (@MaybePresent Optional<String>
e Optional<String>

equivalent

Define a type system

1. Type hierarchy (subtyping)

2. Type rules (what operations are illegal)
3. Type introduction (types of new values)

4. Dataflow (run-time tests)

@MaybePresent

Type rules for Optional T

@Present

“Never use Optional.get() unless you can prove that the Optional is present.”

Only call Optional.get() on areceiver of

type @Present Optional. |example cal
myOptional.get()

class Optional<T> {
T get(Optional<T> this) { ... } ////

} get () takes 1 argument,
the receiver

http://docs.oracle.com/javase/8/docs/api/java/util/Optional.html#get--

@MaybePresent

Type rules for Optional T

@Present

“Never use Optional.get() unless you can prove that the Optional is present.”

Only call Optional.get() on areceiver of

type @Present Optional. |example cal
myOptional.get()

class Optional<T> {
T get(@Present Optional<T> this) {...}
}

http://docs.oracle.com/javase/8/docs/api/java/util/Optional.html#get--

@MaybePresent
Type rules for Optional !

@Present
“Never use Optional.get() unless you can prove that the Optional is present.”

Only call Optional.get() on areceiver of
type @Pr‘esent OptiOnal. exampleca”;

myOptional.get()

class Optional<T> {

T get(@Present Optional<T> this) {...}
T orElseThrow(@Present ... this, ...) {...}

}

http://docs.oracle.com/javase/8/docs/api/java/util/Optional.html#get--

Define a type system

1. Type hierarchy (subtyping)

2. Type rules (what operations are illegal)

3. Type introduction (type of new values)
4. Dataflow (run-time tests)

Type introduction for Optional

@MaybePresent

I

@Present

“Never use Optional.get() unless you can prove that the Optional is present.”

Optional<T> of (T value) {...}
Optional<T> ofNullable(T value){...}

http://docs.oracle.com/javase/8/docs/api/java/util/Optional.html#get--

@MaybePresent

Type introduction for Optional ___.!

@Present
“Never use Optional.get() unless you can prove that the Optional is present.”

@Present Optional<T> of(T value) {...}
Optional<T> ofNullable(@Nullable T value){...}

http://docs.oracle.com/javase/8/docs/api/java/util/Optional.html#get--

Define a type system

1. Type hierarchy (subtyping)
2. Type rules (what operations are illegal)
3. Type introduction (type of new values)
s. Dataflow (run-time tests)

@MaybePresent

Flow-sensitive type refinement &

@Present

After an operation, give an expression a more
specific type

@MaybePresent Optional<String> x;
if (x.isPresent()) {
X IS @Present here

}
(L . }
o ——— XIS @MaybePresent again W

Now, let's implement it

Follow the instructions in the
Checker Framework Manual
https://checkerframework.org/manual/#creating-a-checker

https://checkerframework.org/manual/#creating-a-checker

You can use the Optional Checker

Distributed with the Checker Framework
Checks 6 of the 7 rules for using Optional

Pluggable type-checking improves code

Checker Framework for creating type checkers
. Featureful, effective, easy to use, scalable

Prevent bugs at compile time
Create custom type-checkers
Improve your code!

http://CheckerFramework.org/

