
Custom type-checking for
programming, teaching, and

research
Michael D. Ernst

University of Washington
& Amazon Web Services

http://CheckerFramework.org/

Motivation

java.lang.NullPointerExceptionjava.lang.NullPointerException

Java's type system is too weak

Type checking prevents many errors
 int i = "hello";

Type checking doesn't prevent enough errors

 System.console().readLine();

Java's type system is too weak

Type checking prevents many errors
 int i = "hello";

Type checking doesn't prevent enough errors

 System.console().readLine();

NullPointerException

Solution: Pluggable type-checking

Write stronger types (specifications)
● verification reveals errors
● static analysis: no effect on execution

Implementation: the Checker Framework
● used at Amazon, Google, Uber, startups, …
● compatible: uses standard Java syntax

Why use pluggable type-checking?

● For programming
● For teaching
● For research

Benefits for programmers

● Find bugs in programs
○ Guarantee the absence of errors

● Improve documentation
○ Improve code structure & maintainability

● Aid compilers, optimizers, and analysis tools
○ E.g., could reduce number of run-time checks

● Possible negatives:
○ Must write the types (or use type inference)
○ False positives are possible (can be suppressed)

Benefits for students

Teach students about specifications
Excite students about correctness & verification
Impose requirements on student code
Expose students to research

Results: higher grades; spent no more time

Researchers can build new analyses

Quickly prototype your analysis ideas
Framework handles full Java

generics, type inference, inner classes, …
Enables large-scale experiments
Increases impact

(Building new analyses is the focus of this talk.)

Prevent null pointer exceptions

Java 8 introduced the Optional<T> type
● Wrapper; content may be present or absent
● Constructor: of(T value)
● Methods: boolean isPresent(), T get()

Optional<String> maidenName;

possible
NullPointerException
possible
NullPointerException

possible
NullPointerException

String mName;
mName.equals(...);

possible
NoSuchElementException

Optional<String> omName;
omName.get().equals(...);

Optional reminds you to check

if (mName != null) {
 mName.equals(...);
}

if (omName.isPresent()) {
 omName.get().equals(...);
}

Complex rules for using Optional correctly!

Without Optional: With Optional:

How not to use Optional
Stuart Marks’s rules:

1. Never, ever, use null for an Optional variable or return value.
2. Never use Optional.get() unless you can prove that the Optional is present.
3. Prefer alternative APIs over Optional.isPresent() and Optional.get().
4. It’s generally a bad idea to create an Optional for the specific purpose of

chaining methods from it to get a value.
5. If an Optional chain has a nested Optional chain, or has an intermediate

result of Optional, it’s probably too complex.
6. Avoid using Optional in fields, method parameters, and collections.
7. Don’t use an Optional to wrap any collection type (List, Set, Map). Instead,

use an empty collection to represent the absence of values.

Other guidelines from:
Stephen Colebourne, Edwin
Dalorzo, Vasco Ferreira C.,
Brian Goetz, Daniel
Olszewski, Nicolai Parlog,
Oleg Shelajev, ...

Let’s enforce the
rules with a tool.

http://docs.oracle.com/javase/8/docs/api/java/util/Optional.html#get--
http://docs.oracle.com/javase/8/docs/api/java/util/Optional.html#isPresent--
http://docs.oracle.com/javase/8/docs/api/java/util/Optional.html#get--

Enforce rules with a tool
Stuart Marks’s rules:

1. Never, ever, use null for an Optional variable or return value.
2. Never use Optional.get() unless you can prove that the Optional is present.
3. Prefer alternative APIs over Optional.isPresent() and Optional.get().
4. It’s generally a bad idea to create an Optional for the specific purpose of

chaining methods from it to get a value.
5. If an Optional chain has a nested Optional chain, or has an intermediate

result of Optional, it’s probably too complex.
6. Avoid using Optional in fields, method parameters, and collections.
7. Don’t use an Optional to wrap any collection type (List, Set, Map). Instead,

use an empty collection to represent the absence of values.

http://docs.oracle.com/javase/8/docs/api/java/util/Optional.html#get--
http://docs.oracle.com/javase/8/docs/api/java/util/Optional.html#isPresent--
http://docs.oracle.com/javase/8/docs/api/java/util/Optional.html#get--

Which rules to enforce with a tool
Stuart Marks’s rules:

1. Never, ever, use null for an Optional variable or return value.
2. Never use Optional.get() unless you can prove that the Optional is present.
3. Prefer alternative APIs over Optional.isPresent() and Optional.get().
4. It’s generally a bad idea to create an Optional for the specific purpose of

chaining methods from it to get a value.
5. If an Optional chain has a nested Optional chain, or has an intermediate

result of Optional, it’s probably too complex.
6. Avoid using Optional in fields, method parameters, and collections.
7. Don’t use an Optional to wrap any collection type (List, Set, Map). Instead,

use an empty collection to represent the absence of values.

These are dataflow or
type system properties.

http://docs.oracle.com/javase/8/docs/api/java/util/Optional.html#get--
http://docs.oracle.com/javase/8/docs/api/java/util/Optional.html#isPresent--
http://docs.oracle.com/javase/8/docs/api/java/util/Optional.html#get--

Define a type system

Define a type system (or any analysis)

1. Type hierarchy (subtyping)
2. Type rules (what operations are illegal)
3. Type introduction (type of new values)
4. Dataflow (run-time tests)

Main rule for the Optional type system:
● “Never use Optional.get() unless you can prove that the Optional is present.”

http://docs.oracle.com/javase/8/docs/api/java/util/Optional.html#get--

Define a type system

1. Type hierarchy (subtyping)
2. Type rules (what operations are illegal)
3. Type introduction (type of new values)
4. Dataflow (run-time tests)

1. Type hierarchy

Animal

Reptile Mammal

Giraffe Human

Object

List Number

Integer Float
2 pieces of information:
● the types
● their relationships (lower = fewer values, more properties)

Type hierarchy for Optional

@MaybePresent

@Present

“Never use Optional.get() unless you can prove that the Optional is present.”

2 pieces of information:
● the types
● their relationships (lower = fewer values, more properties)

http://docs.oracle.com/javase/8/docs/api/java/util/Optional.html#get--

Type = type qualifier + Java basetype

@Present Optional<String> maidenName;
Type qualifier Java basetype

Type

Default qualifier = @MaybePresent
● @MaybePresent Optional<String>
● Optional<String>

@MaybePresent
Optional<String>

@Present
Optional<String>

equivalent

Define a type system

1. Type hierarchy (subtyping)
2. Type rules (what operations are illegal)
3. Type introduction (types of new values)
4. Dataflow (run-time tests)

Type rules for Optional

Only call Optional.get() on a receiver of
type @Present Optional.

“Never use Optional.get() unless you can prove that the Optional is present.”

class Optional<T> {

 T get(Optional<T> this) { … }

}

@MaybePresent

@Present

example call:

myOptional.get()

get() takes 1 argument,
the receiver

http://docs.oracle.com/javase/8/docs/api/java/util/Optional.html#get--

Type rules for Optional

Only call Optional.get() on a receiver of
type @Present Optional.

“Never use Optional.get() unless you can prove that the Optional is present.”

class Optional<T> {

 T get(@Present Optional<T> this) {…}

}

@MaybePresent

@Present

example call:

myOptional.get()

http://docs.oracle.com/javase/8/docs/api/java/util/Optional.html#get--

Type rules for Optional

Only call Optional.get() on a receiver of
type @Present Optional.

“Never use Optional.get() unless you can prove that the Optional is present.”

class Optional<T> {

 T get(@Present Optional<T> this) {…}

 T orElseThrow(@Present … this, …) {…}

}

@MaybePresent

@Present

example call:

myOptional.get()

http://docs.oracle.com/javase/8/docs/api/java/util/Optional.html#get--

Define a type system

1. Type hierarchy (subtyping)
2. Type rules (what operations are illegal)
3. Type introduction (type of new values)
4. Dataflow (run-time tests)

Type introduction for Optional
“Never use Optional.get() unless you can prove that the Optional is present.”

@MaybePresent

@Present

Optional<T> of(T value) {…}

Optional<T> ofNullable(T value){…}

http://docs.oracle.com/javase/8/docs/api/java/util/Optional.html#get--

Type introduction for Optional

@Present Optional<T> of(T value) {…}

Optional<T> ofNullable(@Nullable T value){…}

“Never use Optional.get() unless you can prove that the Optional is present.”

@MaybePresent

@Present

http://docs.oracle.com/javase/8/docs/api/java/util/Optional.html#get--

Define a type system

1. Type hierarchy (subtyping)
2. Type rules (what operations are illegal)
3. Type introduction (type of new values)
4. Dataflow (run-time tests)

Flow-sensitive type refinement

@MaybePresent Optional<String> x;

if (x.isPresent()) {

 ...
}

...

@MaybePresent

@Present

x is @Present here

x is @MaybePresent again

After an operation, give an expression a more
specific type

Now, let’s implement it

Follow the instructions in the
Checker Framework Manual
https://checkerframework.org/manual/#creating-a-checker

https://checkerframework.org/manual/#creating-a-checker

You can use the Optional Checker

Distributed with the Checker Framework
Checks 6 of the 7 rules for using Optional

Pluggable type-checking improves code

Checker Framework for creating type checkers
● Featureful, effective, easy to use, scalable

Prevent bugs at compile time
Create custom type-checkers
Improve your code!

http://CheckerFramework.org/

