
CSE 503
Software Engineering

Intro to Abstract Interpretation



Recap: static vs. dynamic analysis
Static analysis

● Reason about the program without executing it.
● Build an abstraction of run-time states.
● Reason over abstract domain.
● Prove a property of the program.
● Sound* but conservative.

Dynamic analysis
● Reason about the program based on some program executions.
● Observe concrete behavior at run time.
● Improve confidence in correctness.
● Unsound* but precise.

* Some static analyses are unsound; dynamic analyses can be sound.



Recap: Terminology and important concepts

1. Precision vs. Recall (and FP/FN/TP/TN)

TP FN

FP TNG
ro

un
d 

Tr
ut

h Pos

Neg

Analysis result
Pos Neg

Precision:
|TP| 

|TP| + |FP|

Recall:
|TP| 

|TP| + |FN|



Recap: Terminology and important concepts

1. Precision vs. Recall (and FP/FN/TP/TN)
2. Soundness vs. Completeness

TP FN

FP TNG
ro

un
d 

Tr
ut

h Pos

Neg

Analysis result
Pos Neg

Soundness:
no FNs

Completeness:
no FPs



Recap: Terminology and important concepts

1. Precision vs. Recall (and FP/FN/TP/TN)
2. Soundness vs. Completeness
3. Concrete domain vs. Abstract domain

Abstract domain

even, odd

Concrete domain

0, 1, 2, 3, 4, …



Recap: Terminology and important concepts

1. Precision vs. Recall (and FP/FN/TP/TN)
2. Soundness vs. Completeness
3. Concrete domain vs. Abstract domain
4. Accuracy vs. Precision

Concrete domain

0, 1, 2, 3, 4, …

Abstract domain

even, odd

Accuracy

Precision

Accuracy

Precision

Accuracy = correct estimate
Precision = small estimate



Today

● Abstract interpretation
○ Introduction
○ Abstraction functions
○ Concretization functions
○ Transfer functions
○ Lattices



Properties of an ideal program analysis

● Soundness
● Completeness
● Termination

…
int x = 0;
while (!isDone()) {
  x = x + 1;
}

…

A

B

C



Properties of an ideal program analysis

● Soundness
● Completeness
● Termination

…
int x = 0;
while (!isDone()) {
  x = x + 1;
}

…

A

B

Abstract interpretation sacrifices completeness (precision)

C



Compiler checks and optimizations
● Liveness analysis (register reallocation)
● Reachability analysis (dead code elimination)
● Code motion (while(cond){x = comp(); ...}) 

Abstract interpretation: applications



Abstract interpretation: code examples

public class Liveness {                                                                                                                 
  public void liveness() {                                                       
    int a;                                                                          
    if (alwaysTrue()) {                                                          
      a = 1;                                                                     
    }                                                                            
    System.out.println(a);                                                       
  }                                                                              
}

Liveness
public void deadCode() {

  return;

  System.out.println("Here!");
}

Reachability



Abstract interpretation: example

x = 0;
y = read_even();
x = y + 1;
y = 2 * x;
x = y - 2;
y = x / 2;

Program

Are all statements necessary?



Abstract interpretation: example

x = 0;
y = read_even();
x = y + 1;
y = 2 * x;
x = y - 2;
y = x / 2;

x
1
 = 0;

y
1
 = read_even();

x
2
 = y

1
 + 1;

y
2
 = 2 * x

2
;

x
3
 = y

2
 - 2;

y
3
 = x

3
 / 2;

Program SSA form

X1 is never read.



Abstract interpretation: example

x = 0;
y = read_even();
x = y + 1;
y = 2 * x;
x = y - 2;
y = x / 2;

x
1
 = 0;

y
1
 = read_even();

x
2
 = y

1
 + 1;

y
2
 = 2 * x

2
;

x
3
 = y

2
 - 2;

y
3
 = x

3
 / 2;

Program

y3 = x3 / 2
y3 = (y2 - 2) / 2
y3 = (2 * x2 - 2) / 2
y3 = (2 * (y1 + 1) - 2) / 2
y3 = (2 * y1 + 2 - 2) / 2
y3 = y1
x3 = y1 * 2

SSA form

Symbolic reasoning shows simplification potential.



Abstraction function

x = 0;
y = read_even();
x = y + 1;
y = 2 * x;
x = y - 2;
y = x / 2;

Program

{x=0;  y=undef}
{x=0;  y=8}
{x=9;  y=8}
{x=9;  y=18}
{x=16; y=18}
{x=16; y=8}

Concrete execution



Abstraction function

x = 0;
y = read_even();
x = y + 1;
y = 2 * x;
x = y - 2;
y = x / 2;

Program

{x=0;  y=undef}
{x=0;  y=8}
{x=9;  y=8}
{x=9;  y=18}
{x=16; y=18}
{x=16; y=8}

Concrete execution Mapping to abstract 
domain (even, odd)
{x=e; y=e}
{x=o; y=e}
{x=o; y=e}
{x=e; y=e}
{x=e; y=e}



Abstraction function

x = 0;
y = read_even();
x = y + 1;
y = 2 * x;
x = y - 2;
y = x / 2;

Program

{x=0;  y=undef}
{x=0;  y=8}
{x=9;  y=8}
{x=9;  y=18}
{x=16; y=18}
{x=16; y=8}

Concrete execution Mapping to abstract 
domain (even, odd)
{x=e; y=e}
{x=o; y=e}
{x=o; y=e}
{x=e; y=e}
{x=e; y=e}

But, what’s the purpose of the abstraction function?



Abstraction function

Concrete (P( ℕ))     Abstract

⟙ 
E O

⟙ 

{..., 4, 6, 8, ...}

{}

{1}  {4}  {8}

What is the abstraction (𝛂) of {4}?



Abstraction function

Concrete (P( ℕ))     Abstract

⟙ 
E O

⟙ 

{..., 4, 6, 8, ...}

{}

{1}  {4}  {8}

𝛂

  

The abstraction (𝛂) of {4} is even.



Abstraction function

Concrete (P( ℕ))     Abstract

⟙ 
E O

⟙ 

{..., 4, 6, 8, ...}

{}

{1}  {4}  {8}

The abstraction (𝛂) of {4} is even.

𝛂



Abstraction function

Concrete (P( ℕ))     Abstract

⟙ 
E O

⟙ 

{..., 4, 6, 8, ...}

{}

{1}  {4}  {8}

𝛂

The abstraction (𝛂) of {} is bottom.



Concretization function

Concrete (P( ℕ))     Abstract

⟙ 
E O

⟙ 

{..., 4, 6, 8, ...}

{}

{1}  {4}  {8}

𝛂

What is the concretization (𝛄) of   ?⟙ 



Concretization function

Concrete (P( ℕ))     Abstract

⟙ 
E O

⟙ 

{..., 4, 6, 8, ...}

{}

{1}  {4}  {8}

𝛂

What is the concretization (𝛄) of  E ?

𝛄



Concretization function

Concrete (P( ℕ))     Abstract

⟙ 
E O

⟙ 

{..., 4, 6, 8, ...}

{}

{1}  {4}  {8}

𝛂

𝛄

𝛄



Relationship between concrete and abstract

Concrete
state

Concrete
state

Abstract
state

Abstract
state

Concrete exec

Abstract exec

Transfer function

Abstraction function

Concretization function



Abstract interpretation: approximation

Concrete
state

Concrete
state

Abstract
state

Abstract
state

Concrete exec

Abstract exec

Do both paths lead to the same abstract state?



Abstract interpretation: approximation

Concrete
state

Concrete
state

Abstract
state

Abstract
state

Concrete exec

Abstract exec

Do both paths lead to the same concrete state?



Set, semilattice, lattice



Set, semilattice, lattice
Set



Set, semilattice, lattice
Set
● unordered collection of distinct objects

1            4
3     2



Set, semilattice, lattice
Set
● unordered collection of distinct objects

Partially ordered set

1            4
3     2



Set, semilattice, lattice
Set
● unordered collection of distinct objects

Partially ordered set
● Binary relationship <:

○ Reflexive: x < x
○ Anti-symmetric: x < y ⋀ y < x => x = y
○ Transitive: x < y ⋀ y < z => x < z

1            4
3     2

1

3

2

4



Set, semilattice, lattice
Set
● unordered collection of distinct objects

Partially ordered set
● Binary relationship <:

○ Reflexive: x < x
○ Anti-symmetric: x < y ⋀ y < x => x = y
○ Transitive: x < y ⋀ y < z => x < z

Join semilattice

Meet semilattice

1            4
3     2

1

3

2

4



Set, semilattice, lattice
Set
● unordered collection of distinct objects

Partially ordered set
● Binary relationship <:

○ Reflexive: x < x
○ Anti-symmetric: x < y ⋀ y < x => x = y
○ Transitive: x < y ⋀ y < z => x < z

Join semilattice
● Partially ordered set with least upper bound (join)

Meet semilattice
● Partially ordered set with greatest lower bound (meet)

1            4
3     2

1

3

2

4

1

3

2

⟙ 

4

⟙ 

1

3

2

4



Set, semilattice, lattice
Set
● unordered collection of distinct objects

Partially ordered set
● Binary relationship <:

○ Reflexive: x < x
○ Anti-symmetric: x < y ⋀ y < x => x = y
○ Transitive: x < y ⋀ y < z => x < z

Join semilattice
● Partially ordered set with least upper bound (join)

Meet semilattice
● Partially ordered set with greatest lower bound (meet)

Lattice
● Both a join semilattice and a meet semilattice

1            4
3     2

1

3

2

4

1

3

2

⟙ 

4

⟙ 

1

3

2

4

⟙ 

1

3

2

4

⟙ 



⊤

Lattice: example

Abstract domain: even, odd, unknown (  ), {} (   ) 

⊤

⊤

even odd

⊤



Lattice: example

Abstract domain: -, 0, +, unknown, {} 



Lattice: example

Abstract domain: -, 0, +, unknown, {} 



Lattice: example

…
int x = 0;
while (!isDone()) {
  x = x + 1;
}

…

Goal: approximate the values of x after the loop 

What are possible abstract domains and their trade-offs?



Lattice: example

…
int x = 0;
while (!isDone()) {
  x = x + 1;
}

…

Goal: approximate the values of x after the loop 

Possible abstract domains:
● Powerset of set of integers
● Intervals
● ...


