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Recap: static vs. dynamic analysis
Static analysis

● Reason about the program without executing it.
● Build an abstraction of run-time states.
● Reason over abstract domain.
● Prove a property of the program.
● Sound* but conservative.

Dynamic analysis
● Reason about the program based on some program executions.
● Observe concrete behavior at run time.
● Improve confidence in correctness.
● Unsound* but precise.

* Some static analyses are unsound; dynamic analyses can be sound.



Recap: Terminology and important concepts

1. Precision vs. Recall (and FP/FN/TP/TN)
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Recap: Terminology and important concepts

1. Precision vs. Recall (and FP/FN/TP/TN)
2. Soundness vs. Completeness
3. Concrete domain vs. Abstract domain

Abstract domain

even, odd

Concrete domain

0, 1, 2, 3, 4, …



Recap: Terminology and important concepts

1. Precision vs. Recall (and FP/FN/TP/TN)
2. Soundness vs. Completeness
3. Concrete domain vs. Abstract domain
4. Accuracy vs. Precision

Concrete domain

0, 1, 2, 3, 4, …

Abstract domain

even, odd

Accuracy

Precision

Accuracy

Precision

Accuracy = correct estimate
Precision = small estimate



Today

● Abstract interpretation
○ Introduction
○ Abstraction functions
○ Concretization functions
○ Transfer functions
○ Lattices



Properties of an ideal program analysis

● Soundness
● Completeness
● Termination

…
int x = 0;
while (!isDone()) {
  x = x + 1;
}

…

A
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Properties of an ideal program analysis

● Soundness
● Completeness
● Termination

…
int x = 0;
while (!isDone()) {
  x = x + 1;
}

…
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Abstract interpretation sacrifices completeness (precision)

C



Compiler checks and optimizations
● Liveness analysis (register reallocation)
● Reachability analysis (dead code elimination)
● Code motion (while(cond){x = comp(); ...}) 

Abstract interpretation: applications



Abstract interpretation: code examples

public class Liveness {                                                                                                                 
  public void liveness() {                                                       
    int a;                                                                          
    if (alwaysTrue()) {                                                          
      a = 1;                                                                     
    }                                                                            
    System.out.println(a);                                                       
  }                                                                              
}

Liveness
public void deadCode() {

  return;

  System.out.println("Here!");
}

Reachability



Abstract interpretation: example

x = 0;
y = read_even();
x = y + 1;
y = 2 * x;
x = y - 2;
y = x / 2;

Program

Are all statements necessary?



Abstract interpretation: example

x = 0;
y = read_even();
x = y + 1;
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x = y - 2;
y = x / 2;
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Program SSA form

X1 is never read.



Abstract interpretation: example

x = 0;
y = read_even();
x = y + 1;
y = 2 * x;
x = y - 2;
y = x / 2;
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Program

y3 = x3 / 2
y3 = (y2 - 2) / 2
y3 = (2 * x2 - 2) / 2
y3 = (2 * (y1 + 1) - 2) / 2
y3 = (2 * y1 + 2 - 2) / 2
y3 = y1
x3 = y1 * 2

SSA form

Symbolic reasoning shows simplification potential.



Abstraction function

x = 0;
y = read_even();
x = y + 1;
y = 2 * x;
x = y - 2;
y = x / 2;

Program

{x=0;  y=undef}
{x=0;  y=8}
{x=9;  y=8}
{x=9;  y=18}
{x=16; y=18}
{x=16; y=8}

Concrete execution



Abstraction function

x = 0;
y = read_even();
x = y + 1;
y = 2 * x;
x = y - 2;
y = x / 2;

Program

{x=0;  y=undef}
{x=0;  y=8}
{x=9;  y=8}
{x=9;  y=18}
{x=16; y=18}
{x=16; y=8}

Concrete execution Mapping to abstract 
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{x=o; y=e}
{x=e; y=e}
{x=e; y=e}



Abstraction function

x = 0;
y = read_even();
x = y + 1;
y = 2 * x;
x = y - 2;
y = x / 2;

Program

{x=0;  y=undef}
{x=0;  y=8}
{x=9;  y=8}
{x=9;  y=18}
{x=16; y=18}
{x=16; y=8}

Concrete execution Mapping to abstract 
domain (even, odd)
{x=e; y=e}
{x=o; y=e}
{x=o; y=e}
{x=e; y=e}
{x=e; y=e}

But, what’s the purpose of the abstraction function?



Abstraction function

Concrete (P( ℕ))     Abstract

⟙ 
E O

⟙ 

{..., 4, 6, 8, ...}

{}

{1}  {4}  {8}

What is the abstraction (𝛂) of {4}?
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The abstraction (𝛂) of {4} is even.
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Abstraction function

Concrete (P( ℕ))     Abstract

⟙ 
E O

⟙ 

{..., 4, 6, 8, ...}

{}

{1}  {4}  {8}

𝛂

The abstraction (𝛂) of {} is bottom.



Concretization function

Concrete (P( ℕ))     Abstract
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What is the concretization (𝛄) of   ?⟙ 



Concretization function
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Concretization function
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Relationship between concrete and abstract

Concrete
state

Concrete
state

Abstract
state

Abstract
state

Concrete exec

Abstract exec

Transfer function

Abstraction function

Concretization function



Abstract interpretation: approximation

Concrete
state

Concrete
state

Abstract
state

Abstract
state

Concrete exec

Abstract exec

Do both paths lead to the same abstract state?



Abstract interpretation: approximation
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Do both paths lead to the same concrete state?
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Set, semilattice, lattice
Set
● unordered collection of distinct objects
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Set, semilattice, lattice
Set
● unordered collection of distinct objects

Partially ordered set
● Binary relationship <:

○ Reflexive: x < x
○ Anti-symmetric: x < y ⋀ y < x => x = y
○ Transitive: x < y ⋀ y < z => x < z
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Set, semilattice, lattice
Set
● unordered collection of distinct objects

Partially ordered set
● Binary relationship <:

○ Reflexive: x < x
○ Anti-symmetric: x < y ⋀ y < x => x = y
○ Transitive: x < y ⋀ y < z => x < z
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Set, semilattice, lattice
Set
● unordered collection of distinct objects

Partially ordered set
● Binary relationship <:

○ Reflexive: x < x
○ Anti-symmetric: x < y ⋀ y < x => x = y
○ Transitive: x < y ⋀ y < z => x < z

Join semilattice
● Partially ordered set with least upper bound (join)

Meet semilattice
● Partially ordered set with greatest lower bound (meet)
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Set, semilattice, lattice
Set
● unordered collection of distinct objects

Partially ordered set
● Binary relationship <:

○ Reflexive: x < x
○ Anti-symmetric: x < y ⋀ y < x => x = y
○ Transitive: x < y ⋀ y < z => x < z

Join semilattice
● Partially ordered set with least upper bound (join)

Meet semilattice
● Partially ordered set with greatest lower bound (meet)

Lattice
● Both a join semilattice and a meet semilattice
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⊤

Lattice: example

Abstract domain: even, odd, unknown (  ), {} (   ) 

⊤

⊤

even odd

⊤



Lattice: example

Abstract domain: -, 0, +, unknown, {} 



Lattice: example

Abstract domain: -, 0, +, unknown, {} 



Lattice: example

…
int x = 0;
while (!isDone()) {
  x = x + 1;
}

…

Goal: approximate the values of x after the loop 

What are possible abstract domains and their trade-offs?



Lattice: example

…
int x = 0;
while (!isDone()) {
  x = x + 1;
}

…

Goal: approximate the values of x after the loop 

Possible abstract domains:
● Powerset of set of integers
● Intervals
● ...


