CSE 503

Software Engineering

Intro to Abstract Interpretation

Recap: static vs. dynamic analysis

Static analysis
e Reason about the program without executing it.
Build an abstraction of run-time states.
Reason over abstract domain.
Prove a property of the program.
Sound* but conservative.

Dynamic analysis
e Reason about the program based on some program executions.
e Observe concrete behavior at run time.
e Improve confidence in correctness.
e Unsound* but precise.

* Some static analyses are unsound; dynamic analyses can be sound.

Recap: Terminology and important concepts

1. Precision vs. Recall (and FP/FN/TP/TN)

(Recall:

Analysis result |TP|
Pos Neg |ITP| + |FN|

£ Pos TP f\

=

o

c

o

¢ Neg FP TN

Precision:
TP

|TP| + |FP]

Recap: Terminology and important concepts

1. Precision vs. Recall (and FP/FN/TP/TN)
2. Soundness vs. Completeness

Analysis result

Pos Neg

Soundness:
no FNs

TP

(F?2) | ™

&
(%))

Ground Truth

P4
®
«Q

Completeness:
no FPs

Recap: Terminology and important concepts

1. Precision vs. Recall (and FP/FN/TP/TN)

2. Soundness vs. Completeness
3. Concrete domain vs. Abstract domain

Concrete domain Abstract domain

0,1,2, 3,4, ... even, odd

Recap: Terminology and important concepts

B~ =

Precision vs. Recall (and FP/FN/TP/TN)

Soundness vs. Completeness
Concrete domain vs. Abstract domain

Accuracy vs. Precision

Concrete domain Abstract domain
<«——— Precision - » Precision
0,1, 2, 3,/4, ... even, odd
T A
Accuracy Accuracy

Accuracy = correct estimate
Precision = small estimate

Today

e Abstract interpretation

O O O O O

Introduction

Abstraction functions
Concretization functions
Transfer functions
Lattices

Properties of an ideal program analysis

e Soundness
e Completeness
e Termination

int x = @;,__— |

while (!isDone()) { B

x=x+1;/ c
} /

Properties of an ideal program analysis

e Soundness
e Completeness
e Termination

int x = @;,__— |

while (!isDone()) { B

X =X + 1&//////// c
} /

Abstract interpretation sacrifices completeness (precision)

Abstract interpretation: applications

Compiler checks and optimizations

e Liveness analysis (register reallocation)

e Reachability analysis (dead code elimination)

e Code motion (while(cond){x = comp(); ...})

Abstract interpretation: code examples

Liveness Reachability
public class Liveness { public void deadCode() {
public void liveness() {
int a; return;
if (alwaysTrue()) {
a =1; System.out.println("Here!");
} }
System.out.println(a);
}
}

Abstract interpretation: example

Program
X = 0;
y = read_even();
X =Yy + 1;
y = 2% Xx;
X =Yy - 2;
y =x/ 2;

Are all statements necessary?

Abstract interpretation: example

Program

< XK XK X

9;
read _even();

SSA form

y, = read_even();
X, =Yy, + 1;
y2=2*X2J
X; =Y, - 2;

X1 IS hever read.

Abstract interpretation: example

Program

< XK XK X

9;
read _even();

SSA form
X, = 0;
y, = read_even();
x2=y1+1;
Y, = 2 % X3
x3=y2—2;
y; = X3 /25

Y, =X,/ 2
y3=(y2'2)/2

Y, =(2%%x,-2)/2
y;=(2%(y,+1)-2)/2
y,=(2%y, +2-2)/2
Y3 =Y,

X, =Yy, "2

Symbolic reasoning shows simplification potential.

Abstraction function

Program

< XK XK X

9;
read_even();

Concrete execution

{x=0; y=undef}
{x=0; y=8}
{x=9; y=8}
{x=9; y=18}
{x=16; y=18}
{x=16; y=8}

Abstraction function

Program Concrete execution Mapping to abstract
X = 0; (x=0; y=undef} domain (even, odd)
y = read_even(); {x=0; y=8} {x=e; y=e}
X =y +1; {x=9; y=8} - {x=0; y=e}
y = 2 * x; {x=9; y=18} {x=0; y=e}
X =Yy - 2; {x=16; y=18} {x=e; y=e}
:i!i_i/i/ii/////’—__ {x=16; y=8} {x=e; y=e}

Abstraction function

Program Concrete execution Mapping to abstract
X = 0; (x=0; y=undef} domain (even, odd)
y = read_even(); {x=0; y=8} {x=e; y=e}
x=y+1; {x=9; y=8} - {x=0; y=e}
y =2 % X; {x=9; y=18} {x=0; y=e}
X =Yy - 2; {x=16; y=18} {x=e; y=e}
:i\i~i/i/ii/////’___ {x=16; y=8} {x=e; y=e}

But, what's the purpose of the abstraction function?

Abstraction function

Concrete (P(N)) Abstract

{1} {4} {8}
NS
8

What is the abstraction (a) of {4}?

Abstraction function

Concrete (P(N)) Abstract

The abstraction (o) of {4} is even.

Abstraction function

Concrete (P(N)) Abstract

The abstraction (o) of {4} is even.

Abstraction function

Concrete (P(N)) Abstract

The abstraction (o) of {} is bottom.

Concretization function

Concrete (P(N)) Abstract

What is the concretization (7y) of 17

Concretization function

Concrete (P(N)) Abstract

L

What is the concretization (y) of E ?

Concretization function

Concrete (P(N)) Abstract

L

Relationship between concrete and abstract

Concretization function J

Concrete Concrete exec Concrete
>
state state 4
{Abstraction function j>
\/ \/
Abstract Abstract exec _ Abstract
state state

Transfer function J

Abstract interpretation: approximation

Concrete Concrete exec _ Concrete
state state
v
\/ > \/
Abstract Abstract exec _ Abstract
state state

Do both paths lead to the same abstract state?

Abstract interpretation: approximation

Concrete Concrete exec Concrete

state > state 4
v \/
Abstract Abstract exec _ Abstract
state state

Do both paths lead to the same concrete state?

Set, semilattice, lattice

Set, semilattice, lattice
Set

Set, semilattice, lattice

Set
e unordered collection of distinct objects

Set, semilattice, lattice

Set
e unordered collection of distinct objects

Partially ordered set

Set, semilattice, lattice
Set

e unordered collection of distinct objects

Partially ordered set
e Binary relationship <:
o Reflexive: x < x
o Anti-symmetric: X< yAy<x=>x=y
o Transitive: x<yAy<z=>x<z

Set, semilattice, lattice
Set

e unordered collection of distinct objects

Partially ordered set
e Binary relationship <:
o Reflexive: x < x
o Anti-symmetric: X< yAy<x=>x=y
o Transitive: x<yAy<z=>x<z

Join semilattice

Meet semilattice

Set, semilattice, lattice

Set
e unordered collection of distinct objects

Partially ordered set
e Binary relationship <:
o Reflexive: x < x
o Anti-symmetric: X< yAy<x=>x=y
o Transitive: x<yAy<z=>x<z

Join semilattice
e Partially ordered set with least upper bound (join)

Meet semilattice
e Partially ordered set with greatest lower bound (meet)

Set, semilattice, lattice

Set
e unordered collection of distinct objects

Partially ordered set
e Binary relationship <:
o Reflexive: x < x
o Anti-symmetric: X< yAy<x=>x=y
o Transitive: x<yAy<z=>x<z

Join semilattice
e Partially ordered set with least upper bound (join)

Meet semilattice
e Partially ordered set with greatest lower bound (meet)

Lattice
e Both a join semilattice and a meet semilattice

Lattice: example

Abstract domain: even, odd, unknown (), {} ()

T
N
even odd

N

Lattice: example

Abstract domain: -, 0, +, unknown, {}

Lattice: example

Abstract domain: -, 0, +, unknown, {}

T (top)

A\

Lattice: example

Goal: approximate the values of x after the loop

int x = 9;
while (!isDone()) {
X=X+1;

}

What are possible abstract domains and their trade-offs?

Lattice: example

Goal: approximate the values of x after the loop

| Possible abstract domains:
1n’F X = ?; e Powerset of set of integers
while (!isDone()) { Int |

X = X + 1; ® ntitervais

} L

