Static & dynamic analysis
CSE 503

Selecting an abstract domain

(x=2;y=5)
y = X++;
(x=3;y=2)

(xis odd; yis odd)
Yy = X++;

(x is even; y is odd)

(x=1{3,57};y={9,11,13})
y = X++;
(x=1{4,6,8};y=1{3,57})

(x=3, y=11),({x=5, y=9), (x=7, y=13)
YV = X++;
(x=4, y=3), {x=6, y=5), {x=8, y=7)

(X is prime; y is prime)
y = X++;

(x is anything; y is prime)

(x =fa_,....z_)y =fa ...z))
Yy = X++;

X)

(X _X lay

+1 n+1 n

Analysis result: positive and negative

|ldeal analysis outputs: “program is wrong” or “program is right”

Analysis result: positive and negative

|ldeal analysis outputs: “program is wrong” or “program is right”
Actual analysis outputs:

e “Program might be wrong” or “program is right”
e “Program is wrong” or “program might be right”

Analysis result: positive and negative

|ldeal analysis outputs: “program is wrong” or “program is right”
Actual analysis outputs:

e “Program might be wrong” or “program is right” verification
e “Program is wrong” or “program might be right” linting

“Positive” = “alarm” = “program might be wrong”

“Negative” = “OK” = “program is right”

True/false and positive/negative

Analysis result

Alarm (: an) OK (: I\ng/)

=

s Alarm

~ (= Pos)

o)

S

o OK

O (= Neg)

True/false

and positive/negative

Analysis result

Alarm (: an) OK (: I\Ing/)

L

S Alarm TP FN

= (= Pos)

ge]

[

-

o OK FP N

O (= Neg)

Precision vs recall (and FP/FN/TP/TN)

Recall:
Analysis resulit |TP]
Alarm (= an) OK (: Neaqa =+
Alarm P D
(= Pos)

TN

round Truth

Soundness vs. completeness

Ground Truth

(= Neg)

Analysis result

Alarm (: an) QK (: I\Ing/)
TP FN
FP TN

Soundness vs. completeness

Aresult is correct or incorrect (or is a TP/FP/FN/TN).
An alarm (“Program might be wrong”) is always correct.
An analysis is sound if every result is correct.

no FNs

Soundness:
100% recall

Analysis result
Alarm (: Pne/) OK (: I\Ing/)

larm TP

TN

Completeness:
no FPs
100% precision

Concrete domain vs. abstract domain

Concrete domain vs. abstract domain

Concrete domain

0,

1,

2, 3,

4, ...

Abstract domain

even, odd

Accuracy vs. precision

Concrete domain Abstract domain
——— Precision Precision
01,2 34, .. F;\?en,ocm
Accuracy Accuracy

Accuracy = correct estimate (guaranteed if sound analysis)
Precision = small estimate

Any analysis can be done statically or dynamically

» Type safety: no memory corruption or operations on wrong types of values
 Static type-checking
« Dynamic type-checking

« Slicing: what computations could affect a value
« Static: reachability over dependence graph
« Dynamic: tracing

Memory checking

Goal: find array bound violations, uses of uninit. memory
Purify [Hastings 92], Valgrind: run-time instrumentation
« Tagged memory: 2 bits (allocated, initialized) per byte
« Each instruction checks/updates the tags
» Allocate: set “A” bit, clear “I” bit
« Write: require “A” bit, set “I” bit
« Read: require “I” bit
» Deallocate: clear “A” bit
LCLint [Evans 96]: compile-time dataflow analysis
» Abstract state contains allocated and initialized bits
» Each transfer function checks/updates the state

Identical analyses!

Another example: atomicity checking [Flanagan 2003]

Specifications

» Specification checking
 Statically: theorem-proving
« Dynamically: assert statement

+ Specification generation
 Statically: by hand or abstract interpretation [Cousot 77]

» Dynamically: by invariant detection [Ernst 99], reporting unfalsified
properties

More analogous analyses

When you have a problem, consider both static and dynamic approaches

