
Static & dynamic analysis
CSE 503

Selecting an abstract domain

〈 x = { 3, 5, 7 }; y = { 9, 11, 13 } 〉
 y = x++;
〈 x = { 4, 6, 8 }; y = { 3, 5, 7 } 〉

〈 x is prime; y is prime 〉
 y = x++;
〈 x is anything; y is prime 〉

〈 x = 2; y = 5 〉
 y = x++;
〈 x = 3; y = 2 〉

〈 xn = f(an-1,…,zn-1); yn = f(an-1,…,zn-1) 〉
 y = x++;
〈 xn+1 = xn+1; yn+1 = xn 〉

〈x=3, y=11〉, 〈x=5, y=9〉, 〈x=7, y=13〉
 y = x++;
〈x=4, y=3〉, 〈x=6, y=5〉, 〈x=8, y=7〉

〈 x is odd; y is odd 〉
 y = x++;
〈 x is even; y is odd 〉

Analysis result: positive and negative

Ideal analysis outputs: “program is wrong” or “program is right”

Analysis result: positive and negative

Ideal analysis outputs: “program is wrong” or “program is right”

Actual analysis outputs:

● “Program might be wrong” or “program is right”
● “Program is wrong” or “program might be right”

Analysis result: positive and negative

Ideal analysis outputs: “program is wrong” or “program is right”

Actual analysis outputs:

● “Program might be wrong” or “program is right” verification
● “Program is wrong” or “program might be right” linting

“Positive” = “alarm” = “program might be wrong”

“Negative” = “OK” = “program is right”

True/false and positive/negative

G
ro

un
d

Tr
ut

h

Alarm
(= Pos)

OK
(= Neg)

Analysis result
Alarm (= Pos) OK (= Neg)

True/false and positive/negative

TP FN

FP TN

Analysis result
Alarm (= Pos) OK (= Neg)

G
ro

un
d

Tr
ut

h

Alarm
(= Pos)

OK
(= Neg)

Precision vs recall (and FP/FN/TP/TN)

TP FN

FP TN

Analysis result
Alarm (= Pos) OK (= Neg)

Precision:
|TP|

|TP| + |FP|

Recall:
|TP|

|TP| + |FN|
G

ro
un

d
Tr

ut
h

Alarm
(= Pos)

OK
(= Neg)

Soundness vs. completeness

TP FN

FP TN

Analysis result
Alarm (= Pos) OK (= Neg)

G
ro

un
d

Tr
ut

h

Alarm
(= Pos)

OK
(= Neg)

Soundness vs. completeness

TP FN

FP TN

Analysis result
Alarm (= Pos) OK (= Neg)

Soundness:
no FNs

100% recall

Completeness:
no FPs

100% precision

G
ro

un
d

Tr
ut

h

Alarm
(= Pos)

OK
(= Neg)

A result is correct or incorrect (or is a TP/FP/FN/TN).
An alarm (“Program might be wrong”) is always correct.
An analysis is sound if every result is correct.

Concrete domain vs. abstract domain

Concrete domain vs. abstract domain

Concrete domain

0, 1, 2, 3, 4, …

Abstract domain

even, odd

Accuracy vs. precision

Concrete domain

0, 1, 2, 3, 4, …

Abstract domain

even, odd

Accuracy

Precision

Accuracy

Precision

Accuracy = correct estimate (guaranteed if sound analysis)
Precision = small estimate

Any analysis can be done statically or dynamically

• Type safety: no memory corruption or operations on wrong types of values
• Static type-checking
• Dynamic type-checking

• Slicing: what computations could affect a value
• Static: reachability over dependence graph
• Dynamic: tracing

Memory checking

Goal: find array bound violations, uses of uninit. memory
Purify [Hastings 92], Valgrind: run-time instrumentation

• Tagged memory: 2 bits (allocated, initialized) per byte
• Each instruction checks/updates the tags

• Allocate: set “A” bit, clear “I” bit
• Write: require “A” bit, set “I” bit
• Read: require “I” bit
• Deallocate: clear “A” bit

LCLint [Evans 96]: compile-time dataflow analysis
• Abstract state contains allocated and initialized bits
• Each transfer function checks/updates the state

Identical analyses!

Another example: atomicity checking [Flanagan 2003]

Specifications

• Specification checking
• Statically: theorem-proving
• Dynamically: assert statement

• Specification generation
• Statically: by hand or abstract interpretation [Cousot 77]
• Dynamically: by invariant detection [Ernst 99], reporting unfalsified

properties

More analogous analyses

When you have a problem, consider both static and dynamic approaches

