CSE 503

Software Engineering

Intro to Abstract Interpretation

Recap: static vs. dynamic analysis

Static analysis

- Reason about the program without executing it.
- Build an abstraction of run-time states.
- Reason over abstract domain.
- Prove a property of the program.
- Sound* but conservative.

Dynamic analysis

- Reason about the program based on some program executions.
- Observe concrete behavior at run time.
- Improve confidence in correctness.
- Unsound* but precise.

^{*} Some static analyses are unsound; dynamic analyses can be sound.

1. Precision vs. Recall (and FP/FN/TP/TN)

- 1. Precision vs. Recall (and FP/FN/TP/TN)
- 2. Soundness vs. Completeness

- 1. Precision vs. Recall (and FP/FN/TP/TN)
- 2. Soundness vs. Completeness
- 3. Concrete domain vs. Abstract domain

Concrete domain

Abstract domain

0, 1, 2, 3, 4, ...

even, odd

- 1. Precision vs. Recall (and FP/FN/TP/TN)
- 2. Soundness vs. Completeness
- 3. Concrete domain vs. Abstract domain
- 4. Accuracy vs. Precision

Accuracy = correct estimate
Precision = small estimate

Abstract domain

Precision

even, odd

Accuracy

Today

- Abstract interpretation
 - Introduction
 - Abstraction functions
 - Concretization functions
 - Transfer functions
 - Lattices

Properties of an ideal program analysis

- Soundness
- Completeness
- Termination

```
int x = 0;
while (!isDone()) {
   x = x + 1;
}
```

Properties of an ideal program analysis

- Soundness
- Completeness
- Termination

```
int x = 0;
while (!isDone()) {
    x = x + 1;
}
```

Abstract interpretation sacrifices completeness (precision)

Abstract interpretation: applications

Compiler checks and optimizations

- Liveness analysis (register reallocation)
- Reachability analysis (dead code elimination)
- Code motion (while(cond) {x = comp(); ...})

Abstract interpretation: code examples

Liveness

```
public class Liveness {
  public void liveness() {
    int a;
    if (alwaysTrue()) {
        a = 1;
     }
     System.out.println(a);
  }
}
```

Reachability

```
public void deadCode() {
   return;
   System.out.println("Here!");
}
```

Abstract interpretation: example

Program

```
x = 0;
y = read_even();
x = y + 1;
y = 2 * x;
x = y - 2;
y = x / 2;
```

Are all statements necessary?

Abstract interpretation: example

Program

```
x = 0;
y = read_even();
x = y + 1;
y = 2 * x;
x = y - 2;
y = x / 2;
```

SSA form

 X_1 is never read.

Abstract interpretation: example

Program

```
x = 0;
y = read_even();
x = y + 1;
y = 2 * x;
x = y - 2;
y = x / 2;
```

SSA form

$$y_3 = x_3 / 2$$

 $y_3 = (y_2 - 2) / 2$
 $y_3 = (2 * x_2 - 2) / 2$
 $y_3 = (2 * (y_1 + 1) - 2) / 2$
 $y_3 = (2 * y_1 + 2 - 2) / 2$
 $y_3 = y_1$
 $x_3 = y_1 * 2$

Symbolic reasoning shows simplification potential.

Program

```
x = 0;
y = read_even();
x = y + 1;
y = 2 * x;
x = y - 2;
y = x / 2;
```

Concrete execution

```
{x=0; y=undef}
{x=0; y=8}
{x=9; y=8}
{x=9; y=18}
{x=16; y=18}
{x=16; y=8}
```

Program

```
x = 0;
y = read_even();
x = y + 1;
y = 2 * x;
x = y - 2;
y = x / 2;
```

Concrete execution

Mapping to abstract domain (even, odd)

Program

```
x = 0;
y = read_even();
x = y + 1;
y = 2 * x;
x = y - 2;
y = x / 2;
```

Concrete execution

Mapping to abstract domain (even, odd)

```
\{x=0; y=undef\}
\{x=0; y=8\} \longrightarrow \{x=e; y=e\}
\{x=9; y=8\} \longrightarrow \{x=o; y=e\}
\{x=9; y=18\} \longrightarrow \{x=o; y=e\}
\{x=16; y=18\} \longrightarrow \{x=e; y=e\}
\{x=16; y=8\} \longrightarrow \{x=e; y=e\}
```

But, what's the purpose of the abstraction function?

Concrete ($P(\mathbb{N})$)

Abstract

What is the abstraction (α) of {4}?

What is the abstraction (α) of $\{8\}$?

What is the abstraction (α) of $\{\}$?

Concretization function

What is the concretization (γ) of \bot ?

Concretization function

What is the concretization (γ) of **E**?

Concretization function

γ

Transfer function

Transfer function

Abstract interpretation: approximation

Do both paths lead to the same abstract state?

Abstract interpretation: approximation

Do both paths lead to the same concrete state?

Set

• unordered collection of distinct objects

Set

unordered collection of distinct objects

Partially ordered set

Set

unordered collection of distinct objects

Partially ordered set

- Binary relationship <:
 - Reflexive: x ≤ x
 - Anti-symmetric: $x \le y \land y \le x \Rightarrow x = y$
 - Transitive: $x \le y \land y \le z \Rightarrow x \le z$

Set

unordered collection of distinct objects

Partially ordered set

- Binary relationship <:
 - Reflexive: x ≤ x
 - Anti-symmetric: $x \le y \land y \le x => x = y$
 - Transitive: $x \le y \land y \le z \Rightarrow x \le z$

Join semilattice

Meet semilattice

Set

unordered collection of distinct objects

Partially ordered set

- Binary relationship <u><</u>:
 - Reflexive: $x \le x$
 - Anti-symmetric: $x \le y \land y \le x \Rightarrow x = y$
 - Transitive: $x \le y \land y \le z \Rightarrow x \le z$

Join semilattice

Partially ordered set with least upper bound (join)

Meet semilattice

Partially ordered set with greatest lower bound (meet)

Set

unordered collection of distinct objects

Partially ordered set

- Binary relationship <:
 - Reflexive: $x \le x$
 - Anti-symmetric: $x \le y \land y \le x => x = y$
 - Transitive: $x \le y \land y \le z \Rightarrow x \le z$

Join semilattice

Partially ordered set with least upper bound (join)

Meet semilattice

Partially ordered set with greatest lower bound (meet)

Lattice

Both a join semilattice and a meet semilattice

Abstract domain: even, odd, unknown (\top), {} (\bot)

Abstract domain: -, 0, +, unknown, {}

Abstract domain: -, 0, +, unknown, {}

Goal: approximate the values of x after the loop

```
int x = 0;
while (!isDone()) {
   x = x + 1;
}
...
```

What are possible abstract domains and their trade-offs?

Goal: approximate the values of x after the loop

```
int x = 0;
while (!isDone()) {
   x = x + 1;
}
...
```

Possible abstract domains:

- Powerset of set of integers
- Intervals
- ...