
Using Vision LLMs For UI Testing
Lawrence Tan, David Dai, Jiuyang Lyu

University of Washington
Paul G. Allen School of Computer Science and Engineering

Seattle, United States
{lawtan,kun02,jiuyal2}@cs.washington.edu

ABSTRACT
Automated UI testing is a critical component of frontend software
development that helps ensure that key functionality works and
is retained after code changes. Traditional UI tests have dependen-
cies on code structure or specific screen presentations that make
them brittle and prone to breaking after code changes, even if
the user-facing functionality the developer is testing still works.
We hypothesize that Large Language Models (LLMs) with image
processing capabilities could execute UI tests, reducing brittleness
by removing dependencies on code structure and exact element
positioning. We develop a LLM UI testing system, evaluate its per-
formance, and present insights for future applications of LLMs for
UI testing and other computer-use tasks.

1 INTRODUCTION
Automated UI testing is a crucial component of modern software
development to ensure that key user interactions function correctly.
Traditional UI tests are typically hardcoded scripts that depend on
the source code and interact directly with the front-end. Unfor-
tunately, UI test suites often fail to test all features of front-ends
because they are tedious to write and prone to stop working af-
ter changes to the front-end being tested. This is because their
implementation involves hardcoding element names or display co-
ordinates in the test, effectively coupling the test to the code being
tested. An ideal testing system would not depend on hardcoded
references to the underlying code or UI layout coordinates, but
instead be able to execute common user flows in the app as the
human end-users of the UI would.

In this paper, we present an LLM-based UI testing system that
uses screenshots of the UI instead of requiring code or hardcoded
coordinates as inputs, in order to reduce test brittleness caused
by changes in the implementation or presentation of the UI. Our
research question is:
RQ1 Can image LLMs execute UI tests without being coupled to

the code or hardcoded screen coordinates?
The rest of this work will be organized as follows: Section 2 will

summarize prior works and contrast this work against them for the
task of creating automated UI tests that are robust against UI code

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
Conference 2025, 1 - 4 January, 2025, City, Country
© 2025 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM
https://doi.org/10.1145/nnnnnnn.nnnnnnn

changes. Section 3 will discuss the algorithm our testing framework
will follow to execute automated UI tests. Section 4 will detail how
our framework is implemented. Sections 5, 6, 7, and 8 will discuss
our evaluation techniques, results, and summarize our final insights
and contributions.

2 RELATEDWORK
There exists a plethora of approaches targeted towards address-
ing the brittleness of existing UI testing frameworks due to their
programmatic specification’s dependence on the UI’s hierarchy.
These approaches typically addresses this issue through either de-
coupling testing from code using computer vision, or allowing the
test framework to adapt to changes in UI hierarchy using LLMs.

Prior to the rise of LLMs, Chang et. al [1] devised a computer
vision based approach where developers first pre-specified a series
of buttons to interact with in the forms of images, and during test
execution, a computer vision model would match the pre-specified
button images to the locations of buttons on screen that it should
click. This approach decoupled UI tests from the source code itself
reducing brittleness, but is still reliant on human users to manually
screenshot the buttons they wish to press and chain them into a
sequence to test, making it time consuming to create tests.

Given that LLMs have been demonstrated to excel at sequen-
tial planning reasoning problems ([6], [2]), there have been recent
works that began to utilize LLMs to tackle UI testing due to the
task’s sequential nature. Prominently, GPT4Droid featured an ap-
proach that converted UI widgets and components to text using
the UI hierarchy files found in Android apps, then prompted LLMs
for actions to perform in order to test for desired behaviors [4].
Guardian builds on top of this idea by adding refinement to the
list of potential UI interactions extracted from the UI hierarchy,
so that the LLM only needs to search over a limited number of
actions, improving its performance [5]. However, both models rely
on converting a given app into text by leveraging the fact that
Android app package (APK) files have their UI hierarchy readily
extractable. This reliance on an application to reveal its internal
hierarchy by converting code to text results in some coupling of
the test to the code and makes the testing frameworks less portable
to other platforms such as iOS where the hierarchy is not easily
accessible.

Our approach seeks to leverage recent advancement in multi-
modal language models such as GPT-4o to gain the best of both com-
puter vision approaches and natural language model approaches. At
a high level, we leverage multi-modal language models by directly
feeding our models images of the UI and prompts detailing the test
to perform, to allow the model to automatically execute tests using
images for context. This will not only decouple our approach’s
reliance on UI hierarchy that previous language model shared, but

1

https://doi.org/10.1145/nnnnnnn.nnnnnnn


Conference 2025, 1 - 4 January, 2025, City, Country Lawrence Tan, David Dai, Jiuyang Lyu

also free it from the computer vision approaches need for develop-
ers to micromanage each UI action to perform by passing in screen
shots of which button to press.

3 TECHNIQUE
3.1 Automated Testing Loop
As an overview, our approach will take a description of the expected
behavior and what steps we need to take to reach the behavior (e.g.
“change the app theme by clicking on the settings icon”) specified in
natural language as input, and automatically execute the UI test by
sending the LLM images of the UI and asking it for the appropriate
UI action (clicks, scroll, etc.). A pseudocode representation of our
algorithm is found in Algorithm 1.

Algorithm 1 Test execution loop
1: 𝑝𝑟𝑜𝑚𝑝𝑡 ← 𝑠𝑜𝑚𝑒 𝑢𝑠𝑒𝑟 𝑝𝑟𝑜𝑚𝑝𝑡

2: 𝑒𝑛𝑣 ← 𝑇𝑒𝑠𝑡𝐸𝑛𝑣𝑖𝑟𝑜𝑛𝑚𝑒𝑛𝑡 ()
3: 𝑎𝑔𝑒𝑛𝑡 ← 𝐴𝑔𝑒𝑛𝑡 (𝑝𝑟𝑜𝑚𝑝𝑡)
4: 𝑜𝑟𝑎𝑐𝑙𝑒 ← 𝑎𝑔𝑒𝑛𝑡 .𝑜𝑟𝑎𝑐𝑙𝑒

5: 𝑐𝑢𝑟𝑆𝑡𝑎𝑡𝑒 ← 𝑖𝑛𝑖𝑡 𝑖𝑚𝑎𝑔𝑒

6: while 𝑜𝑟𝑎𝑐𝑙𝑒 (𝑐𝑢𝑟𝑆𝑡𝑎𝑡𝑒) is not done do
7: 𝑎𝑐𝑡𝑖𝑜𝑛 ← 𝑎𝑔𝑒𝑛𝑡 .𝑔𝑒𝑡𝐴𝑐𝑡𝑖𝑜𝑛(𝑐𝑢𝑟𝑆𝑡𝑎𝑡𝑒)
8: 𝑐𝑢𝑟𝑆𝑡𝑎𝑡𝑒 ← 𝑒𝑛𝑣 .𝑡𝑎𝑘𝑒𝐴𝑐𝑡𝑖𝑜𝑛(𝑎𝑐𝑡𝑖𝑜𝑛)
9: if 𝑜𝑟𝑎𝑐𝑙𝑒 (𝑐𝑢𝑟𝑟𝑆𝑡𝑎𝑡𝑒) is failed then
10: 𝑡ℎ𝑟𝑜𝑤 𝑒𝑟𝑟𝑜𝑟 𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑

11: 𝑑𝑜𝑛𝑒!

More specifically, our LLM automated testing framework starts
by taking in:
• The expected behavior to test for.
• A description of steps we need to take to achieve the behavior
(e.g. first we must click on the profile icon, then we need to
click on edit).

Where the items above will form our prompt given to the language
model we will call 𝑎𝑔𝑒𝑛𝑡 . From there, the main body of the testing
loop begins by passing in an image of the current state of the UI
which prompts the agent for the next UI action in the format of a
click specified by pixel coordinates. The framework will then take
the output UI action from the agent and perform the action on the
UI. The resulting UI state is captured in an image, and passed to the
agent to query for whether we’ve achieved desired result or a bug
is detected (where bug is defined in Section ??). If neither condition
is met, the resulting image is passed to the start of the main body
loop and the process is repeated until the test is terminated via bug
detection or desired result achieved. Thus, the agent acts as the
test oracle that determines when the test is completed. As a cost
optimization, if the desired state is not reached within a maximum
number of UI actions as specified in the expected behavior descrip-
tion, the framework consider this to be a bug and will terminate as
well.

3.2 Understanding images
From our preliminary testing, we observed that LLMs struggled
with returning the correct pixel location to UI components it identi-
fied in the input raw image. We believe that this is because current

LLMs lack the capability to understand the relationship between
precise pixel coordinates on an image and the identified UI com-
ponent. Given this limitation, we add an overlay to the images
passed to the LLM. At a high level, the overlay is responsible for
augmenting the input image with features such as bounding boxes
or captions around UI components to help the LLM clearly iden-
tify which component it wishes to interact with. In the following
subsections, we will elaborate on three overlay approaches.

3.2.1 Grid overlay. To reduce the precision required of the LLM’s
output, we decided to overlay a grid over the screenshot. Instead of
providing exact pixel coordinates, the LLM would simply choose
which grid cell it wanted to click, and the Playwright test backend
would click the pixel coordinates corresponding to the middle of
the grid cell.

This implementation was inspired by an open-source project
called GridGPT 1. Using GridGPT, we first overlay the input image
with a grid that evenly divides the image into cells. GridGPT num-
bers each cell sequentially from left to right, top to bottom, and
places this number as text in the middle of each cell. To increase
the contrast between the black cell number and the underlying UI,
a semi-transparent grey layer is also added on top the image. An
example of a GridGPT overlaid image is shown in figure 1.

After adding the grid overlay, the modified image is passed to
the LLM to parse. The LLM will return the cell number to indicate
which cell it wishes to click on. The cell number will be transformed
into the pixel coordinate corresponding to the center of the cell and
is returned by the agent.

Figure 1: GridGPT output with numbered labels inside each cell

3.2.2 Bounding Boxes. Throughout our experiments as discussed
in Section 6, the key drawback of the grid overlay approach is the
need for a hyperparameter specifying the size of grid cells. A large
grid cells reduces the amount of noise on the original image due to
the grid and cell labels but also decreases the precision for the areas
the model is capable is able to interact with. A small grid cell suffers
from the opposite effects, increasing precision but also increasing
noise. To avoid needing to balance this hyperparameter, we utilize
a bounding box overlay instead.

Our bounding box overlay uses OmniParser [3] to modify the
raw input image. Given an input image, OmniParser will run a
YOLO based segmentation model to identify bounding boxes in
pixel coordinates for all interactable UI components on the image.
1A repository that overlay a given image with labeled grid cells https://github.com/
quinny1187/GridGPT

2

https://github.com/quinny1187/GridGPT
https://github.com/quinny1187/GridGPT


Using Vision LLMs For UI Testing Conference 2025, 1 - 4 January, 2025, City, Country

Figure 2: Segmentation Model implementation, with number labels
for each identified UI component

From there, we draw the bounding boxes onto the raw image for
each identified component, and we label each box with a unique ID.
A sample output of our bounding box overlay is shown in figure 2
Finally, like the grid overlay, the modified image is passed to the
LLM, and the LLM will return the ID for the bounding box it wishes
to click on. The center pixel coordinate of the bounding box will
then be returned by the agent.

3.2.3 Bounding Boxes with OCR. Our third approach draws in-
spiration from how LLMs are trained. Since LLMs are trained on
text corpus, it follows naturally that they are best suited to handle
textual inputs. Thus, we augment our modified visual data from the
previous approach with Optical Character Recognition (OCR) to
provide a textual description of each UI component into our overlay
step to improve our agent’s ability to accurately interact with the
UI.

In this approach, we use the EasyOcr library 2 to extract the text
present within each bounding box identified by OmniParser. This
creates a mapping of caption to bounding box ID that we pass to the
LLM in addition to the modified image described in the bounding
box approach. A shortened sample of the caption map is shown
below.

{
'Liked Songs ': 45,
'Instrumentals ': 46,
'This The Limousines ': 47,
'Liked Songs Playlist 1,119 songs ': 48,
'car2 ': 49,
'Follow ': 50,
'Daily Mix ': 51,
'Next to Foster The People ': 53,
None: 76

}

We note that the OCR model is incapable of providing accurate
captions for UI components without text such as the None entry
seen above. Thus the LLM is prompted to be aware that the captions
may not be accurate.

4 IMPLEMENTATION
In this section, we will detail our Agent to UI interface and our
approach to prompt engineering the LLM for test execution.

2Optical Character Recognition library EasyOCR https://github.com/JaidedAI/
EasyOCR

4.1 Interfacing with the UI
To allow the LLM to execute UI tests, it needs to have access to
a test execution system that allows it to launch web UIs, perform
clicks and other interactions on the web UI, and take screenshots
of the web UI to analyze. To do this, we use the Playwright testing
library, which exposes a Python interface for interacting with a
web browser in real-time. Using Playwright, we launch the web UI
under test and are able to interact with it and capture screenshots
of it to send to the LLM.

The LLM will start with receiving a screenshot from Playwright
of the initial state of the web UI and text written by the developer
describing what the LLM needs to do in order to execute the test.
The LLM will reply by outputting the next action as text. We will
have code that parses this text and convert it into a Playwright
function call and execute this action on the web UI. Playwright will
then send a screenshot of the new state of the UI after the action is
executed. This loop repeats until the LLM replies by stating that
the test has been completed successfully or that a bug was found
and the test execution must stop.

4.2 Instructing the language model
To make the LLM understand the task and execute UI tests effec-
tively, we design setup prompt to provide context information for
the UI testing and input/output format LLM should follow. The
setup prompt includes following information:
• Context: Statement asking LLM to act as a testing agent.
Description of the functionality of app to be tested.
• Interaction Flow: Description of what LLM is expected to
do.
• Input/Output format:Description of input and output(response)
format, bug types, and valid UI actions. The input format for
each UI testing step is a screenshot of the UI after last step’s
UI action has been executed. The output of LLM should be
text that contains: expected previous UI action reaction, actual
previous UI action reaction, bug/bug-free statement, next UI
action, and expected next UI action reaction.
• Testing Workflow: The workflow of the UI test. Natural
language description of what to test for each step and the
expected reaction of the app. Relative position of buttons and
UI components (e.g., "the submit button is located below the
username field") can be provided as hints to the LLM to help
it understanding the spatial layout of the UI.

After receiving the setup prompt, the LLMs begin executing the
test, and screenshots of UI will be provided to it following each UI
testing action it takes.

5 EVALUATION SETUP
5.1 Web UIs
To evaluate the performance of LLMs in UI testing, we will have
LLMs run UI tests on three common real-world web UIs: BBC News,
Google Maps, and Spotify. We chose these three apps as they offer
a range of different UI complexity levels. BBC News is the simplest,
with fewer, clearly labelled buttons in a more uniform layout, while
Spotify is the most complex, with many different buttons with
different shapes, some of which do not have text labels. As we do

3

https://github.com/JaidedAI/EasyOCR
https://github.com/JaidedAI/EasyOCR


Conference 2025, 1 - 4 January, 2025, City, Country Lawrence Tan, David Dai, Jiuyang Lyu

Figure 3: Example of the Spotify user flow recreated as an interactive
Figma prototype, with arrows showing the connections between
different app states

not have access to the source code of these apps, we recreate their
user flows in Figma so that we can modify the behavior of these
existing web UIs and introduce bugs for testing without needing
to modify the code of the web UIs directly. A user flow is a set of
actions and screens that lead to the user’s execution of a specific
app functionality. For example, Figure 1 shows the user flow of
navigating to various screens in the Spotify app. Figma is a design
tool for the creation of high-fidelity interactive prototypes and will
allow us to easily modify the appearance and behavior of real-world
closed-source web UIs.

5.2 Inserting UI Bugs
We will evaluate the LLMs ability to execute test cases on both
correct (no known bugs) UIs and incorrect UIs (bugs intentionally
inserted). We insert two types of bugs: unresponsive buttons and
buttons that lead to the wrong app state when clicked. Since this
project focuses on evaluating the ability of LLM to detect UI bugs in
user flows, we will not consider the code coverage of our tests. We
will instead evaluate the LLMs on the number and types of flows
that it can successfully execute and detect bugs in.

5.3 LLM Performance Evaluation Metrics
We will evaluate our system by running the LLM on known bug-
free and buggy web UIs. For the bug-free test cases, we will evaluate
performance based on the number of times the LLM can successfully
execute all steps in the test case and correctly determines that
there is no bug present. For the buggy test cases, we will evaluate
performance based on the number of times the LLM can execute
the test cases to the point where the bug is exposed and correctly
report the bug.

6 RESULTS
6.1 Grid Overlay Results
Initial test runs of the Grid LLM interface showed that the language
model was capable of identifying and clicking on large features on
screen. This is particularly prominent when the model was able to
identify and click on larger icons such as liked playlist or the profile
icon, but failed to identify the smaller icons such as the mute button.
Through experimenting with various grid sizes, we identified that
there exists a trade off between larger and smaller grids. Larger
grids on the magnitude of 60 pixels by 60 pixels or above allows the

model to more easily observe the UI content being overlaid, but is
too coarse for the model to be able to identify smaller icons exactly.
Smaller grids (lower than 60x60) offers more precise locations to
click on, but the grid overlay introduces too much noise to the
image, making it difficult for the model to correctly identify the
right buttons.

Ultimately, the success rate of the grid overlay was quite poor
across our three web UIs, as while it often could correctly click on
large buttons, it would not be able to click on smaller buttons and
therefore would not be able to progress to the end of the test cases.
It was only able to succeed in detecting unresponsive button bugs,
but this may be because it is not able to click on the buttons at all,
not because it can distinguish between a working and non-working
button.

6.2 Bounding Box Results
As seen in Table 1, our grid approach’s ability to even identify the
correct button to press was heavily dependent on the size of the
grid and was unable to identify the correct location to press for less
than half of the time. Thus we utilize OmniParser, a UI segmenta-
tion model, to identify and label each interactable UI component
on screen with numerical IDs [3]. In Table 1, we observed that
the segmentation model was able to both outperform existing grid
approaches, but also eliminate the need to tune hyperparameters
such as grid sizes. We believe that the segmentation model enjoyed
higher success rate compared to the grid approaches due to two
reasons. The first was that by eliminating a grid on the screen shot
and highlighting only the interactable components, the segmenta-
tion model is able to provide a more limited yet functional selection
of IDs for the LLM to select from. The second reason is the fact that
now when the LLM attempt to select a specific ID, it is guaranteed
to hit the button being highlighted by the segmentation model,
whereas the grid approach suffered from the fact that the grid may
not perfectly overlap with a button the LLM wants to press.

6.3 Bounding Box with OCR Results
We observed that Bounding Box with OCR performed better com-
pared to its Bounding box only counterpart. For tasks that involved
interacting with UI components that features text only, the Bound-
ing box with OCR approach was capable of clicking on the correct
UI component almost every time. However, The OCR approach did
not show any improvement over the other two improvements. We
believe this is due to the fact that the OCR model we are using is
unable to provide accurate captioning for icons without text. Thus,
the OCR overlay in turn provides no useful textual label to the LLM.
On the other hand, the fact that we see a significant improvement
in the LLM’s capability to interact with text labeled UI components
demonstrated that the OCR augmentation does provide useful addi-
tions to our overlay. Quantitatively, as seen from Table 3, the OCR
approach does not demonstrate clear performance improvement
over the other two model. This is largely due to the fact that our
experiment features a mix of UI components where some do not
have text labels. Finally, from Table 3, we observed that the OCR
approach was unable to enable the LLM to become a reliable oracle
in determining cases where the test has ran into a bug. We believe
this is due to the same reason as other approaches where the LLM

4



Using Vision LLMs For UI Testing Conference 2025, 1 - 4 January, 2025, City, Country

lacks both a clear idea what state it was previously on as well as
the issue that the LLM tends to hallucinate the state its currently
on.

7 DISCUSSION AND FUTUREWORK
From our experience developing our LLM testing system and ob-
serving the LLM’s actions as it executed the tests, we offer some
insights into the limitations of LLMs for UI testing, methods we
used to mitigate them in our work, and areas of future work that
could help address these key challenges.

7.1 Vision LLMs Require Spatial Awareness
Augmentations

We found that LLMs, despite their ability to accept images as input,
have very poor spatial awareness of the absolute position of objects
in the image. For example, in our preliminary explorations, the
LLM was not able to output accurate pixel locations of UI elements,
necessitating the implementation of various image overlays to as-
sist the model. Even after adding overlays, there were still spatial
awareness challenges. When using the grid overlay, the LLM often
selected the wrong grid cell to click, especially when the grid cells
became smaller and there were more cells in the image, probably
because the LLM is not able to process the small visual details of
the grid numbers in addition to the rest of the underlying UI. When
using OmniParser without OCR, we found that the LLM was better
able to select the correct buttons to click but still sometimes incor-
rectly clicked a nearby button instead, further suggesting that the
LLM cannot consistently process small visual details. We had our
best results when combining OmniParser with an OCR model that
provided text descriptions of each button, showing that today’s
LLMs, despite their new vision capabilities, are still optimized for
text input. We believe that future systems should focus on using
text descriptions to augment the LLM’s understanding of visual
inputs, instead of trying to add more visual overlays that increase
the level of visual detail beyond what the LLM is able to process.

7.2 Test Prompts Must Be Carefully Written to
Prevent Deviation From Test Instructions

Before we began our testing, we hypothesized that the advanced
text understanding of an LLMwould allowUI test cases to bewritten
without many constraints on the specific language used for the
instructions. While the LLMs were indeed able to understand test
case instructions written in natural language, we found that it was
important to be very specific with the content of the instructions.
For example, it often helped the LLM if the instructions contained
a hint for the position of the button it should click on screen and
a visual description of the button (ex. "Click the hamburger menu
icon on the top left corner of the screen" instead of "Navigate to
the menu"). We also found that we needed to prompt the LLM to
verify that the previous step had successfully changed the state
of the app, otherwise the LLM would simply execute each step
in order without any regard to whether the steps were actually
working and would report no bugs even if the app did not respond
to the interactions. This shows that LLMs do not inherently have
reasoning capabilities for UI testing, and shows the potential for

future work to investigate improved prompting as a method for
improving LLM UI testing performance.

7.3 LLMs Struggle to Be Accurate Test Oracles
When the LLM failed to successfully execute the test case and
correctly report the presence of bugs using the OmniParser overlay
with OCR, we found that it was not because the LLM could not
visually detect the correct button to select, but rather because the
LLM had hallucinated the current state of the app and was therefore
executing the wrong steps, choosing to select the wrong buttons,
or outputting an incorrect bug report. We describe the two forms
of state hallucination below:

7.3.1 False test fail. In this case, the LLMwould stop execution and
report that a bug was present, even if there was no bug. This usually
happened when the LLM accidentally selected the wrong button
to press in the previous step, leading to the app state changing in
a way that the LLM did not expect. The LLM would sometimes
be able to undo its previous action (ex. closing a pop-up that it
accidentally triggered) and try clicking a different button to follow
the test instructions, but other times it would simply stop execution,
reasoning that the unexpected result was due to a bug and not
an incorrect action. Future work could address this problem by
explicitly prompting the LLM to attempt to undo its actions if it
encounters an unexpected app state change instead of immediately
reporting it as a bug, or by giving the LLM textual descriptions
of what the different buttons on the screen do so that the LLM
knows that the state change was an expected behavior of clicking
the wrong button instead of a bug.

7.3.2 False test pass. While we added prompts to prevent this from
happening, we found that in rare cases the LLM would proceed
with the next testing steps even if the app did not respond correctly
to the previous testing steps. For example, in our Spotify tests, the
LLM would sometimes state that it had successfully navigated to
the Liked Songs page even if the app was still on the Home page due
to a bug or incorrect action. The LLM would then proceed with the
next step of returning to the Home screen, which it would interpret
as a successful action as the app was already on the Home screen
to begin with. It would then report that the test succeeded with no
bugs, despite not being able to navigate to the Liked Songs page.
We believe that this could be caused by a combination of the LLM
not visually understanding that the screen has not changed and
the prompting not being robust enough to make the LLM verify
that its actions were successful instead of simply assuming they are
successful. Future work could focus on improving prompts to help
the LLM ignore the fact that it attempted to click on a button and
verify that the click action was actually successful. We also believe
that there is potential, with newer LLMs having larger context
windows, to pass in multiple past images of the UI instead of only
the current image so that the LLM can compare them to determine
whether the correct state change has occurred or not.

7.4 Interactive Backend and Recovery
Mechanisms

One key limitation we observed during testing was that the LLM
often forgets the overall testing workflow and starts executing

5



Conference 2025, 1 - 4 January, 2025, City, Country Lawrence Tan, David Dai, Jiuyang Lyu

Grid overlay GridGPT (Large Grid) GridGPT (Small Grid) OmniParser OmniParser with OCR
Home Button 0 0 0 2 2
Liked Songs 1 3 1 3 3
Profile Button 0 0 0 0 0
Play Button 0 0 0 0 1
Search Bar 0 0 0 0 3

Table 1: LLM Button detection. Out of 3 runs each

OmniParser OmniParser with OCR
Liked Songs 5 5

Liked Songs, Home 2 3
Liked Songs, Play 0 0

Liked Songs, Play, Pause, Home 0 0
Table 2: LLM Multi-step performance. Out of 5 runs each

BBC.com GridGPT OmniParser OmniParser with OCR
Positive 0 0 0

Non-responsive 2 0 0
Wrong link 0 0 1

Google Maps GridGPT OmniParser OmniParser with OCR
Positive 0 0 2

Non-responsive 3 2 2
Wrong link 1 0 0
Spotify GridGPT OmniParser OmniParser with OCR
Positive 0 0 0

Non-responsive 3 0 0
Wrong link 0 0 0

Table 3: Various overlay’s performance on bugless case (positive), non-responsive bug case, and wrong link bug case. Out of 3 runs each.

steps autonomously and deviating from the intended workflow.
Also, there are pop up windows and advertisement in the tested
websites. While LLM attempts basic recovery steps and succeeds
on recovering from simple advertisement by click the "close" or "x"
button, it fails to recover from unexpected status caused by incorrect
previous steps, "sign in/sign up" pop window, and other complex
status. This results in incomplete tests, incorrect operations, or
failure to recover from unexpected app status. We believe that
an interactive backend and a recovery guide in prompt could be
developed in future system.

• Interactive backend: Interactive backend defines structured
objectives for the LLM to complete. Instead of instructing the
LLM to recall the entire testing workflow, the backend will
provided one objective and basic instructions at a time, and
the LLM will come up steps to fulfill the objective,. Once the
LLM determines that the objective is complete, it will send a
completion signal to the backend, which will then assign the
next objective. LLM only need to focus on the current objective
and not required to remember the whole workflow, potentially
reducing errors caused by forgetting previous steps.
• Recovery guide in prompt: A recovery section could be
added to the prompt to explicitly instruct the LLM to recog-
nize unexpected UI elements and attempt recovery. When app

transitions to an incorrect state, the LLM is instructed to navi-
gate back to the correct state rather than blindly coming up
next steps or following the objective. When a UI element does
not appear as expected, the LLM will be instructed to retry
the action.

8 CONTRIBUTION
In this work, we introduce a novel UI testing approach that reduces
brittleness by using multimodal large language models with image
processing capabilities. Our contributions are as follows.
• Decoupling UI tests from UI hierarchy and screen coor-
dinates: By relying on image-based inputs and predefined UI
testing workflow description, our method eliminates the de-
pendency on UI hierarchy and hardcoded screen coordinates,
making UI testing more adaptable to front-end changes.
• Evaluating LLM performance in UI interaction:We sys-
tematically evaluate LLMs’ ability to interpret UI states, exe-
cute interactions, navigate user flows, and detect potential UI
flaws based on visual inputs and natural language instructions.
Through empirical evaluation, we evaluate the feasibility of
using LLMs for automated UI testing and find scenarios where
LLMs struggle.
• Foundation for broader applications: Our findings con-
tribute insights that can be applied to future applications of

6



Using Vision LLMs For UI Testing Conference 2025, 1 - 4 January, 2025, City, Country

LLMs in UI testing and other LLM computer-use tasks, such
as automated game testing and agentic computer interaction
tasks.

REFERENCES
[1] Tsung-Hsiang Chang, Tom Yeh, and Rob Miller. 2010. GUI testing using computer

vision. Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems (2010). https://api.semanticscholar.org/CorpusID:9870881

[2] Difei Gao, Lei Ji, Luowei Zhou, Kevin Qinghong Lin, Joya Chen, Zihan Fan, and
Mike Zheng Shou. 2023. AssistGPT: A General Multi-modal Assistant that can
Plan, Execute, Inspect, and Learn. arXiv:2306.08640 [cs.CV] https://arxiv.org/abs/
2306.08640

[3] Yadong Lu, Jianwei Yang, Yelong Shen, and Ahmed Awadallah. 2024. OmniParser
for Pure Vision Based GUI Agent. arXiv:2408.00203 [cs.CV] https://arxiv.org/abs/
2408.00203

[4] Dezhi Ran, HaoWang, Zihe Song, MengzhouWu, Yuan Cao, Ying Zhang,Wei Yang,
and Tao Xie. 2024. Guardian: A Runtime Framework for LLM-Based UI Exploration.
In Proceedings of the 33rd ACM SIGSOFT International Symposium on Software
Testing and Analysis (Vienna, Austria) (ISSTA 2024). Association for Computing
Machinery, New York, NY, USA, 958–970. https://doi.org/10.1145/3650212.3680334

[5] Hao Wen, Hongming Wang, Jiaxuan Liu, and Yuanchun Li. 2024. DroidBot-
GPT: GPT-powered UI Automation for Android. arXiv:2304.07061 [cs.SE] https:
//arxiv.org/abs/2304.07061

[6] Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan,
and Yuan Cao. 2023. ReAct: Synergizing Reasoning and Acting in Language
Models. arXiv:2210.03629 [cs.CL] https://arxiv.org/abs/2210.03629

7

https://api.semanticscholar.org/CorpusID:9870881
https://arxiv.org/abs/2306.08640
https://arxiv.org/abs/2306.08640
https://arxiv.org/abs/2306.08640
https://arxiv.org/abs/2408.00203
https://arxiv.org/abs/2408.00203
https://arxiv.org/abs/2408.00203
https://doi.org/10.1145/3650212.3680334
https://arxiv.org/abs/2304.07061
https://arxiv.org/abs/2304.07061
https://arxiv.org/abs/2304.07061
https://arxiv.org/abs/2210.03629
https://arxiv.org/abs/2210.03629

	Abstract
	1 Introduction
	2 Related Work
	3 Technique
	3.1 Automated Testing Loop
	3.2 Understanding images

	4 Implementation
	4.1 Interfacing with the UI
	4.2 Instructing the language model

	5 Evaluation Setup
	5.1 Web UIs
	5.2 Inserting UI Bugs
	5.3 LLM Performance Evaluation Metrics

	6 Results
	6.1 Grid Overlay Results
	6.2 Bounding Box Results
	6.3 Bounding Box with OCR Results

	7 Discussion and Future Work
	7.1 Vision LLMs Require Spatial Awareness Augmentations
	7.2 Test Prompts Must Be Carefully Written to Prevent Deviation From Test Instructions
	7.3 LLMs Struggle to Be Accurate Test Oracles
	7.4 Interactive Backend and Recovery Mechanisms

	8 Contribution
	References

