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1 Introduction
User-scheduled languages (USLs) are an emerging class of program-

ming languages built to explicitly express performance optimiza-

tions. The power of a USL comes from the division of a program

into two pieces: an algorithm or object program that specifies the

program’s functional behavior, and a schedule that defines how
the computation is performed, by transforming the original, naïve

algorithm into a high-performance version. USLs typically provide

guarantees that scheduling transformations preserve functional

equivalence to the original algorithm.

State-of-the-art USLs work best on small, computationally inten-

sive kernels with a high degree of data parallelism. In such cases,

program schedules combine SIMD hardware primitives with a va-

riety of loop transformations to yield highly efficient programs.

Unfortunately, existing user-scheduled languages, such as Halide

[8], Elevate [5], and Exo [6], have limited support for kernels that

execute concurrently, or the concurrency is not user-scheduled and

is entirely managed by the compiler. User-scheduling concurrency

is difficult, in part, because of the potential to introduce arbitrary

data races into the object program, thus making it difficult to verify

against the original sequential program. A key feature of Exo is that

it externalizes compiler backends; that is, algorithms like instruction

selection are not automated and instead performed by the program-

mer via the scheduling language, then verified for functional equiv-

alence against a specification of the instruction that exists outside

the compiler. This externalization allows performance-concerned

programmers to optimize programs targeting novel hardware that

would otherwise require larger-scale compiler modifications, in-

cluding optimization of concurrent programs. In order to support

user scheduling of concurrent kernels, we have extended Exo ex-

perimentally with fork and barrier primitives for creating and

synchronizing threads, respectively. Since this is an experimental

extension for the purposes of this project, there are some limita-

tions in the programming model compared to a full-featured fork

and barrier library. In particular, nested fork bodies are not permit-

ted and there is only one global barrier that all forked threads are

subscribed to and must wait at before any can proceed.

We introduce the Static Exo Race Guardian (SERG), a static anal-

ysis tool to detect data races in this experimental extension of Exo.

The focus of our tool is not on the actual introduction of the con-

currency via a schedule, but rather verifying the final, scheduled

program is free of data-races. Scheduling will be handled outside

the scope of this class project.

2 Example
As a concrete example of the problem we are solving, consider the

1D stencil computation illustrated in Figure 1. Each grid represents

the same underlying array at different time steps. Each location

is updated by a weighted combination of its neighbors from the

previous time step. After writing an Exo program that defines this

Figure 1: 1-D stencil computation before and after the data
is divided between threads (red, vertical line) and barriers
(horizontal, dashed line) are inserted for synchronization.
Only single cell computation shown. Barriers are needed
when L or R crosses the division of the buffer. Time proceeds
down after each element has been computed.

functional description of the algorithm, the programmer may wish

to optimize the program by scheduling in concurrency. In order

to accomplish this optimization, suppose that the schedule divides

the data in half and computes with two threads. To preserve pro-

gram correctness, the reads of elements bordering division must

happen after the update by the neighboring thread in the previous

timestep. This necessary synchronization is indicated by the hori-

zontal, dashed line in the diagram on the right. Without the barrier,

the read and write to the same location may be reordered and thus

introduce a data race. Specifically, a data race exists if there is a

write to a location by one thread and a read or write to the same

location by a different thread not separated by a barrier. Unfortu-

nately, there does not exist a mechanism to detect this conflict in

Exo programs, which is necessary to preserve Exo’s guarantee of

safe scheduling transformations.

3 Technique
Static data race detection for general-purpose languages is chal-

lenging, in part, because it relies on an accurate pointer analysis.

Computing a fully precise pointer analysis is undecidable, so ex-

isting static race detection algorithms must make approximations,

which limit their effectiveness in practice. However, because Exo

is a domain-specific language with limitations on the space of pro-

grams that may be expressed, our analysis will not have to handle

details that make arbitrary data race detection difficult. Specifically,

there are no pointers in Exo and only limited mechanisms for alias-

ing a data buffer (the state in the program that we are interested in

detecting data races over), so we will be able to precisely determine

what memory is accessed statically. Furthermore, Exo programs

are largely static-control programs; that is, programs whose control

flow can be statically determined and does not depend on program

data or inputs. There are also no recursive function calls in Exo

programs. There are limited exceptions to these constraints (e.g.,

control flowmay depend on the length of the input buffers, which is

itself an input), but the technique we outline is able to handle these

exceptions. In other words, we can precisely compute an expression

for all the accesses parameterized by thread IDs and loop bounds
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and dispatch to an SMT solver to determine if there are conflicting

accesses between barriers. The high-level algorithm for SERG is

presented below.

Listing 1: SERG Algorithm
for each concurrent region:

reads = {}

writes = {}

for t in body:

reads[t] = construct_symbolic_reads(t)

writes[t] = construct_symbolic_writes(t)

for t1, t2 in threads:

solve(writes(t1). intersect(

reads(t2).union(writes(t2)))

== empty)

Since threads in concurrent Exo programs are synchronized by

barriers, we only need to consider potential data races within a re-

gion between barriers. For each region, we simply need to collect all

of the reads and writes that occur, and construct a query to a solver

that can check whether a data race is possible. The construction

of these regions is outlined in section 4.2. In the following section,

we outline how we can compute the symbolic expression for the

accesses in the presence of various language features.

4 Implementation
SERG is available publicly at https://github.com/andrewdalex/exo-

cse503. To implement SERG, we extended the Exo programming

language with primitives to fork threads and wait at a barrier. We

added support for these features to the front-end of the Exo compiler

and extended the typechecker and transformation process to the

Exo internal representation (IR), called LoopIR. This IR provides

a thin layer over the abstract syntax tree and is the input to our

analysis algorithm. A single pass through the LoopIR constructs

the SMT expression for the read and write indices of all shared

variables, which are more precisely all the variables in-scope prior

to the execution of the fork statement. This set is parameterized by

an index metavariable as well as the thread id parameter. At each

access point a clause is added to the access set (via conjunction

with prior accesses) of the following form:

𝑎𝑐𝑐𝑒𝑠𝑠 = 𝑖 ∧ 𝑖 = dom(i) ∧ control_refinement

where dom(i) gives all values i is allowed to take on in the fork

body and control_refinement is a restriction on when this access
may be executed.

4.1 Query Construction Example
To illustrate a concrete example of this access set contruction, con-

sider the following multi-threaded Exo program:

@proc

def racey_parallel_memzero(n: size , A: i32[n]):

for thread_id in fork (2):

for i in seq(0, n-1):

A[i + thread_id] = 0

This program contains a data race as it zeroes a buffer Awith two
threads. Note, that the “for thread_id in fork" statement is not

a loop and is just the syntax for spawning two threads. There is only

one program point where A is accessed so the access expression

has only one clause. Namely, the following:

(𝑎𝑐𝑐𝑒𝑠𝑠 = 𝑖 + 𝑡ℎ𝑟𝑒𝑎𝑑_𝑖𝑑) ∧ (0 ≤ 𝑖 < 𝑛 − 1) ∧ true

That last clause (true) captures the control flow refinement— in

this case, no refinement is needed because the access is not under

a branch. All variables involved in the indexing expression have

their domains added to the domain sub-clause except thread ID

parameters which are treated as a special case.

When the fork body joins, we loop over all shared-variables with

accesses in the fork body and compute the set intersection. Before

issuing the query, we perform variable substitution in the equation

so that they may vary independently in each access set from one

another (e.g. we want to allow i to take on different values in each

set). The access and thread_id variables are also substituted with
the new thread_id allowed to take on all possible values. We then

ask the solver if 𝑎𝑐𝑐𝑒𝑠𝑠1 = 𝑎𝑐𝑐𝑒𝑠𝑠2, with the subscripts representing

the substituted values on each side of the equation. The final query

looks like this:

((𝑎𝑐𝑐𝑒𝑠𝑠1 = 𝑖1 + 𝑡ℎ𝑟𝑒𝑎𝑑_𝑖𝑑1) ∧ (0 ≤ 𝑖1 < 𝑛 − 1) ∧ true)
∧

((𝑎𝑐𝑐𝑒𝑠𝑠2 = 𝑖2 + 𝑡ℎ𝑟𝑒𝑎𝑑_𝑖𝑑2) ∧ (0 ≤ 𝑖2 < 𝑛 − 1) ∧ true)
∧

(0 ≤ 𝑡ℎ𝑟𝑒𝑎𝑑_𝑖𝑑1, 𝑡ℎ𝑟𝑒𝑎𝑑_𝑖𝑑2 < 2) ∧ 𝑡ℎ𝑟𝑒𝑎𝑑_𝑖𝑑1 ≠ 𝑡ℎ𝑟𝑒𝑎𝑑_𝑖𝑑2

∧
𝑎𝑐𝑐𝑒𝑠𝑠1 = 𝑎𝑐𝑐𝑒𝑠𝑠2

SERG constructs this query for both the write access set and the

write/read access sets. If the solver can satisfy this query, then there

is a data race. SERG dispatches the query to the Z3 SMT solver [3]

using the theory of bitvectors via the pySMT library [4].

4.2 Region Splitting
Our implementation splits the input program into concurrent re-

gions, which are independently verified. In this context, a con-

current region is a sequence of statements executed by multiple

threads, but where no synchronization is present. In other words,

all accesses in a concurrent region may be interleaved between

threads arbitrarily. Additionally, accesses deterministically belong

only to one concurrent region.

There are 3 different ways to construct a concurrent region. The

first, and simplest, is a fork body without barriers present – the

entire fork body is the concurrent region as there is no synchro-

nization within the body. The second case is a barrier within a

sequence of straight-line code. This barrier splits the block of code

into two regions: one containing the statements before the barrier

and one consisting of the statements after the barrier. Finally, the

most complicated case is a barrier within a loop, which creates

3 regions. The first region contains all the code in the region be-

fore the loop and the statements in the loop up to the barrier. The

second region includes the statements after the barrier as well as

the statements before the barrier. Note that in this case, we have

to reflect the different values for the loop index variable within

the region. The third region contains all the statements after the

barrier in the loop as well as the statements after the loop up to

https://github.com/andrewdalex/exo-cse503
https://github.com/andrewdalex/exo-cse503
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the next synchronization point. In the case where multiple barriers

are present in the loop, an additional region is created for each

barrier containing the statements which do not span multiple loop

iterations (i.e., the statements between barriers where the value of

the loop index is effectively fixed for all threads.) In each of these

cases, we have to modify our query to use the correct value for the

loop index variable.

4.3 Additional Program Patterns
In this section, we detail how other Exo program constructs are

handled in SERG with particular attention to those that are helpful

to write useful, parallel programs. While we are still in the process

of extending the features handled, we are currently able to verify

data race-freedom on an expressive enough subset to translate

several microbenchmarks of interest, detailed in Section 5.

Loops outside of a Fork. This is a useful pattern to spawn threads

for every timestep of a big computation, for example. If you look

at our example query in the last section, you will notice that the

loop iterator variables were allowed to vary independently, which

should not be the case if the fork is instead inside the loop. The

solution to this is actually more general: SERG does not perform

the symbol substitution on variables allocated before the fork starts.

This effectively “captures" a single value of each shared variable

across all threads, though that value is still allowed to vary across

its domain. In other words, every thread sees the same value, but

SERG checks all possible values.

If Statements. Conditional branches modify the control clause

of the accesses nested underneath them with the condition they

specify (including the negation of the condition for else clauses).

Process Preconditions. A key feature of Exo is the ability to

specify preconditions on the input via assert statements, which help

many of the safety checks complete. SERG handles preconditions

by adding them to the control refinement clause of all accesses.

Barriers. Barriers form the concurrent regions we analyze, as dis-

cussed in the previous section. Our implementation requires that

barriers are never conditionally executed (i.e., they are not under an

if statement). However, because Exo has static control, this require-

ment is just for engineering purposes and does not pose theoretical

restrictions to our verification. However, a barrier under a branch

introduces the possibility of deadlock, which is complexity we chose

not to handle.

Windowing, Multi-Dimensional Buffers, and Function Calls.
We currently do not handle windowing and also assume that all

buffers have one indexing dimension (without loss of expressivity).

We also do not handle procedure calls yet, but they will be trivially

enabled with windowing as the call arguments can just be inter-

preted as windows to the underlying variables in the caller and the

procedure body inlined. This inlining strategy is possible in Exo

because there is no recursion.

5 Evaluation
Our evaluation aims to answer the following research questions:

RQ1 How well can SERG identify data races in concurrent Exo

programs?

RQ2 Does SERG perform better than state-of-the-art race detectors

operating on the same programs written in C?

In order to answer these questions, we initally planned on using

DataRaceBench [7], amicro-benchmark suite for data race detection.

After translating three of the benchmarks to Exo (see DRB001,

DRB112, and DRB120 in [7]), we realized that DataRaceBench is

a poor benchmark suite for our evaluation. Primarily, this is due

to the fact that most of the tests exploit features in C that are not

expressible in Exo. Consider the following test, labeled DRB195:

double *u1, *u2, c = 0.2;

int n = 10, nsteps = 10;

int main()

{

u1 = malloc(n * sizeof(double ));
u2 = malloc(n * sizeof(double ));
for (int i = 1; i < n - 1; i++)

u2[i] = u1[i] = 1.0 * rand() / RAND_MAX;

u1[0] = u1[n - 1] = u2[0] = u2[n - 1] = 0.5;

for (int t = 0; t < nsteps; t++)

{

#pragma omp parallel for
for (int i = 1; i < n - 1; i++)

{

u2[i] = u1[i] + c * (u1[i - 1] + u1[i + 1] - 2 * u1[i]);

}

double *tmp = u1;

u1 = u2; // u2 = tmp;

}

for (int i = 0; i < n; i++)

printf("%1.2lf␣", u1[i]);

printf("\\n");

free(u1);

free(u2);

}

This program is not expressible in Exo due to the highlighted

statement, which aliases two pointers.Many of the inputs inDataRaceBench

are not portable to Exo for similar reasons. With this realization,

we focused on writing tests directly Exo that demonstrate the ca-

pabilities of SERG. For example, the following test demonstrates

that SERG properly tracks restrictions on array access locations by

branch conditions:

def if_else_safe(a: i8 [10]):

for tid in fork (2):

if tid == 0:

for i in seq(0, 5):

a[i] = 0

else:
for i in seq(5, 10):

a[i] = 1

All of the tests, including those ported from DataRaceBench, are

summarized below.
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Table 1: Results from running SERG on our test suite and 3
DataRaceBench micro-benchmarks.

Test Name Data

Race?

(Y/N)

Result

drb001_yes Y TP

drb112_no N TN

drb120_no N TN

detect_trivial_dr Y TP

verifies_trivial_safe N TN

verifies_trivial_loop_unsafe Y TP

verifies_overlapping_zero_copy_unsafe Y TP

reads_overlap_writes Y TP

reads_not_overlap_writes Y TP

thread_local_ok N TN

basic_branch_unsafe Y TP

basic_branch_safe N TN

if_else_safe N TN

if_else_unsafe Y TP

array_dependent_type_restricts_racey_loop N TN

fork_in_loop_safe N TN

fork_in_loop_unsafe Y TP

barrier_simple_safe N TN

barrier_simple_unsafe_before Y TP

barrier_simple_unsafe_after Y TP

barrier_three_regions_safe N TN

barrier_three_regions_unsafe Y TP

barrier_three_regions_unsafe Y TP

multiple_forks_safe N TN

multiple_forks_unsafe_first Y TP

multiple_forks_unsafe_second Y TP

verifies_loop_split_zero_copy_safe N TN

single_barrier_in_loop N TN

pathalogical_looping_no N TN

pathalogical_looping_yes Y TP

triple_nested N TN

Note that SERG is a sound analysis while the other tools evalu-

ated are not. However, on the three input programs ported from

DataRaceBench, the other race detection tools also produce the cor-

rect results. All experiments were run on the University ofWashing-

ton’s CSE Instructional Linux Cluster, which operate on SuperMicro,

192GB RAM, 2 14-core Intel Gold 6132 processors @ 2.6GHz.

6 Related Work

Deterministic Parallel Java (DPJ). DPJ [2] is an extension to

the Java type system, which enforces determinism (and thus race-

freedom) in multi-threaded programs as a compile-time guarantee.

DPJ unfortunately relies on programmer-provided region annota-

tions to enforce separation between objects on the heap; however,

it is able to provide guarantees about a broader class of programs

than can be expressed in Exo. Our mechanism for tracking accesses

through windows on buffers is also more powerful than DPJ’s sub-

array type, which does not support strided access patterns.

Compositional Static Race Detection RacerD [1] is a static pro-

gram analysis built for speed and scale in Java programs in the

context of software engineering. RacerD is motivated by the inte-

gration of parallelism into Facebook’s News Feed, which was used

as an evaluation metric. RacerD utilizes an abstract domain for

heap manipulation in Java, incorporating multiple lock ownership,

distinction between main and non-main threads, and use of the

synchronized keyword in the language. Its scale and speed within

a modern software engineering context relies on its use in deploy-

ment. It is run during code review on diffs – increasing usability

as developers are already within a debugging context. RacerD also

has different priorities as an analysis, "favoring reduction of false

positives over false negatives," reinforcing the idea that false pos-

itives reduce confidence for developers. RacerD, like SERG, is a

powerful static analysis for race detection. However, it must make

compromises in the soundness of its analysis due to the scale of

its language and usage. SERG, operating on a small scale in Exo, is

able to produce a more precise analysis.

Accurate Static Data Race Detection for C. CSeq-DR [9] is a

static race detection tool for C programs. It shows the reduction

of the problem of race detection to a reachability analysis. They

augment programs with auxiliary global variables tracking the

target address and length of shared memory locations and the

thread id of the thread performing the operation. They further

augment the program with guarded assertions over these auxiliary

variables before reads and writes to shared data such that a violation

of any assertion indicates a data race. The augmented program is

then checked via bounded model checking to ensure that none

of the assertions can be violated up to a set bound, thus ensuring

there are no data races up to that bound. CSeq-DR is able to achieve

highly accurate data race detection with no reported false positives.

However, since it relies on bounded model checking, it could miss

data race bugs if the bounds are too small. SERGmakes the opposite

trade-off– it is sound, so it will never miss a potential data race, but

precision may suffer as a result.
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