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ABSTRACT
Computational notebooks such as Jupyter notebooks have become
a de facto standard for computational science. However, despite
being widely used for scientific workflows and artifacts, Jupyter
notebooks are wildly irreproducible. A primary contributing factor
to the irreproducibility of Jupyter notebooks is the ability within
them to execute code at any time in any order. This leads to out-of-
order execution bugs and program states that are inconsistent with
the text of the notebook.

We present IoLab, a JupyterLab extension that prevents out-of-
order execution bugs by enforcing a single linear order of execution.
With IoLab, the notebook’s state is always kept as if cells were
executed from the top in order without any skipped cells. IoLab
achieves this by saving and loading states as needed. We perform
a qualitative user evaluation of IoLab with four scientists at the
University of Washington.

1 INTRODUCTION
Computational notebooks have become among the most widely
used programming interfaces for data science and computational
science [7, 13]. A computational notebook is a collection of editable
cells traditionally presented as a single, linear sequence from top to
bottom such as in Figure 1. Each cell contains either code or Mark-
down and may be run on demand by the programmer. Critically,
the programmer may execute and edit cells in any order and at
any time. While this feature may aid programmers in exploratory
programming tasks, it contributes to poor reproducibility of in com-
putational notebooks. We focus on one of the most popular compu-
tational notebook implementations: Jupyter Notebooks[6, 9, 12].
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Figure 1: The user interface of a Jupyter Notebook.

Despite the intention of Jupyter Notebooks to be a reproducible
platform for computational scientific workflows[9], a large-scale
study of published Jupyter Notebooks finds that less than a quarter
of Jupyter Notebooks can be re-executed without error and less than
5% produce the same results when re-executed[14]. The same study
found that of studied Jupyter notebooks, 36% had evidence of out-
of-order execution and 76% had evidence of skips in execution order.
Both activities contribute to irreproducibility in Jupyter Notebooks
by divorcing the state of a notebook at any given time from the
program text presented in the notebook.

Consider a simple Jupyter Notebook with three cells shown in
Figure 2. If this notebook was to be run with the cells in their order
“on the page”—i.e., cell 1, then cell 2, then cell 3—the final values of
the variables would be x=20; y=20.

Figure 2: A simple notebook with 3 cells.

1

https://doi.org/10.1145/nnnnnnn.nnnnnnn


117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

CSE 503 2025, 19 March, 2025, Seattle, Washington Eleftheria Beres, Carlyn Schmidgall, and Ryan Zambrotta

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

However, if cell 2 is re-executed at this point—once cell 3 has
already been executed—then the values would be x=20; y=40. Addi-
tionally, if cell 1 is now re-executed, then the variable values become
x=10; y=40. Finally, if cell 2 were to now be re-executed without cell
3 being executed, the variable values would be x=10;y=20. This one
notebook of three cells can result in four different program states
depending on the order in which cells have been executed, which is
inherently problematic for reproducibility. Of these four reachable
states in which the program may be found after execution, only
one—the first—is consistent with the order of the text of the pro-
gram. Thus, the notebook may fail to be reproducible unless the
user executes the cells in the exact same order each time, which is
not guaranteed.

Additionally, Jupyter Notebooks enable programmers to “skip”
code when executing notebooks. In Figure 3, if the three cells are
all executed in order, then the variable values would be a=9; b=10.
However, if the programmer skips cell 2 during program execu-
tion—i.e., if cell 3 was executed directly after cell 1 and cell 2 was
not executed at all—then the variables would take values a=4; b=5.
Here again, only the first state is consistent with the text of the
program.

Figure 3: A different simple notebook with 3 cells.

Out-of-order execution1 and the challenges it poses to repro-
ducibility and consistency are found across a range of notebook
implementations including Jupyter, R Markdown notebooks[3] and
Quarto Notebooks[5]. However, we limit our scope to solely focus-
ing on Jupyter.

In this paper, we introduce IoLab2, a tool built on top of Jupyter-
Lab that prevents out-of-order execution in Jupyter notebooks by
enforcing textual top-to-bottom execution of cells. Our primary
contributions are:
1We include both executing notebook cells in a different order than they’re presented
linearly in a notebook and skipping cells in notebook execution under the umbrella
term “out-of-order execution” since both contribute to the same challenges to irrepro-
ducibility.
2Named both for “In-Order JupyterLab” and after Io, one of the Galilean moons of
Jupyter.

• The design and implementation of the IoLab system to pre-
vent out-of-order execution in computational notebooks in
JupyterLab.

• A user study with scientific researchers at UW providing
insights into the usability of a linearly executing Jupyter
notebook and into the changes to notebook workflows neces-
sitated by a linearly executing notebook (forthcoming).

2 BACKGROUND
2.1 Jupyter notebook architecture
The Jupyter notebook architecture is composed of three component
parts: a front-end notebook interface, a kernel back-end, and a
messaging protocol between the two.

The notebook front-end is responsible for allowing programmers
to edit the text of notebook cells and for sending execution requests
to the kernel. The notebook keeps the text of the program cells and
is reliant on the kernel for code execution, code completion, and
other code interaction tasks.

The back-end to a Jupyter Notebook is a Jupyter kernel. The
kernel is the program that executes code on command from the
notebook front-end. Kernels can be written in any language and
can execute code in any language; the only requirement is that
the kernel implements the necessary infrastructure to receive and
reply to messages from the front-end using the Jupyter messaging
protocol.

2.2 REPL vs. In-order
Traditionally, the default Jupyter kernel is the IPython Kernel. The
IPython Kernel is effectively a Python REPL (read-eval-print loop)
that interactively executes Python commands in the order received.
Most Jupyter kernels for other programming languages also follow
this model. Thus, from the perspective of the IPython kernel—and
most other Jupyter kernels—there is no program or “correct” order
in which cells should be executed. The kernels are simply REPLs
that execute code on command in the order received.

We define in-order execution to mean the order in which
program text appears “on the page.” Thus, in-order execution for
the notebook presented in Figure 2 would be cell 1, then cell 2, then
cell 3. This is equivalent to the order in which lines of code would
be executed if they were to be copied directly from a notebook to a
script in order from the top of the notebook to the end.

3 DESIGN
We seek to facilitate more reproducible computational scientific
work in computational notebooks. As such, there are three primary
design principles for our system:

(1) The system must prevent out-of-order execution. As we
seek to eliminate out-of-order execution bugs, our system
must ensure that it is not possible for a programmer to inad-
vertently or intentionally execute cells in a notebook out of
their linear order.

(2) The system must keep the program state always consis-
tent with the text of the notebook. Since irreproducibility
can emerge due to both out-of-order code execution and to

2
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moving or editing cells after execution, we also must elimi-
nate the possibility for the user to change the program text
within a notebook by editing or reordering cells without up-
dating the notebook state to reflect the textual change.

(3) The system must be practical for use in scientific work-
flows. The system must not require inordinate memory or
computation time to reach the other two design principles.

Furthermore, in this work, we limit our scope to a “closed-world”
model of computational notebooks. In other words, we do not
consider interactions between notebook code and external sources
such as files on the file system. Practically, this means that we do not
track notebook file dependencies the notebook may have. Potential
future work includes integrating our system with the wider file
system to track changes to data source files scientists may rely on
for their work.

4 IMPLEMENTATION
Our tool, IoLab3, prevents out-of-order execution by enforcing a in-
order, top-to-bottom execution order. IoLab consists of two pieces:
a JupyterLab extension and a Jupyter kernel. IoLab is designed to
work with JupyterLab version 4.3.5, the current stable JupyterLab
version as of this writing.

IoLab seeks to be a lightweight change to the JupyterLab user
interface. The only interface change is a new “run” button on cells to
be used in place of the regular JupyterLab run buttons. Additionally,
from the user’s point of view, IoLab notebook functions similarly
to a regular Jupyter Notebook. When a programmer writes and
executes code cells in order from top to bottom (without skipping
cells or re-running cells), IoLab behaves identically to a traditional
Jupyter notebook.

However, when a previous cell—one “higher up” on the page—is
re-executed, a traditional notebook would simply execute this cell,
building off of the current program state. Instead, IoLab will “roll
back” to the proper state, reverting the program state directly before
the re-executed cell before executing it. Thus, the program state
would be identical to if the notebook were restarted and run from
the top up to and including the re-executed cell. The output of all
following cells after the re-executed cell become “dead” and the
cells need to be re-executed. The program state of IoLab will always
be the same as if the notebook was always restarted and the cells
were executed in order from the start.

The most naive implementation of a system that preserves this
desired invariant—that the state always be equivalent to what it
would be if the notebook were always restart and run from the
top—would be a system that always deletes any existing program
state and re-executes all cells up to and including the desired cell.
By construction, this design preserves in-order execution order
because it is equivalent to concatenating all notebook code cells
and running them as a script. Unfortunately, for many scientific
workflows which often rely on expensive computations such as
loading in data or training models, this constant recomputation
would prove to be costly and impractical. As such, a system relying
on this mechanism would violate our design principles.

3https://github.com/ellifteria/iolab-kernel and https://github.com/ellifteria/iolab-
extension

Fortunately, a property of in-order execution order is that code
changes lexically later in the program cannot4 impact the execution
of earlier code. As a consequence, with this invariant, a notebook
cell’s state is unaffected by code changes to later cells; this is differ-
ent from a traditional notebook. This means re-execution of a cell
does not necessarily demand re-execution of the entire program.
Re-execution may begin at the program state immediately preced-
ing the earliest modified cell. Therefore, it is not necessary that all
cells always be recomputed, it is possible to preserve the desired
invariant while allowing only a subset of cells in a notebook to be
re-executed at a given time.

4.1 IoLab JupyterLab extension
The IoLab JupyterLab extension functions as a listener attached to
the JupyterLab front-end user interface. The extension keeps track
of changes to the notebook and updates the notebook’s output and
kernel state accordingly. We achieve this by providing an alternate
semantics for “running” notebook cells and by implementing a
listener on the front-end that detects when changes to the notebook
occur that alter the current state of the kernel.

As opposed to the traditional “run” semantics of a Jupyter note-
book which simply send a cell’s code to the kernel for execution,
when a user runs a cell with the IoLab extension enabled, IoLab
first determines what the state of the kernel should be prior to the
execution of that cell. This means that if the cell at index 𝑛 is run
by the user, the kernel should be in the state that it would be in
after the prior cell, cell 𝑛 − 1, was executed. In the case where 𝑛 = 0,
the kernel should have an “empty” state; in practice, this means
the state that it would be on starting up the IPython REPL before
any code is executed. By induction, therefore when any cell 𝑛 is
executed, the kernel should be in the state it would be in if and
only if all prior cells 0, . . . , 𝑛 − 1 were executed in ascending order
of index—i.e., the state the notebook would be in if all preceding
cells were executed in order from the top after restarting the kernel.
Thus, once cell 𝑛 is executed, the state of the program is the state
the program would be in if the kernel were restarted and all cells
up to and including 𝑛 were run in order from the top.

To achieve this, whenever a cell is executed, the kernel first
determines how the kernel’s current state compares to the desired
state. It does so by keeping track of the last successfully executed
cell in the notebook using the cell’s ID since each cell in a Jupyter
notebook has a unique UUID ID. If there is no most last executed
cell or if the cell being executed is the first cell in the notebook,
then the IoLab extension simply tells the kernel to reset its state
and orders execution of all cells from the first cell in the notebook
to the cell being executed in order. Otherwise, the IoLab extension
obtains the current ordering of cells in the notebook and compares
the indices of the cell being executed and the last executed cell.
If the last executed cell directly precedes the cell being executed,
then the extension can assume the kernel is in the correct state
to execute the cell. Therefore, it tells the kernel to simply execute
that cell without changing its current state beforehand. If instead
the last executed cell is after the cell being executed or is the cell
being executed, then the IoLab extension knows two things. First,

4In the case of loops, the code contents of a cell are restricted to being valid grammatical
statements meaning the entire body of the loop must be contained within a single cell.
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that the kernel state needs to be changed before executing the cell
and second, that the kernel has in the past been in the correct state
to execute the cell being executed. Therefore, the IoLab extension
orders the kernel to revert its state to the desired state and then
execute the cell. Lastly, if the last executed cell is before the cell
being executed but does not directly precede it, the IoLab extension
knows that the kernel state needs to be changed before executing
the cell however the kernel has not necessarily previously been in
the correct state. Thus, to achieve the desired state, the cells between
the last executed cell and the cell being executed must be executed
in order before the cell being executed can be executed. Therefore,
it orders the execution of all cells between the last executed cell
and the cell being executed without changing its state beforehand.
Note that since this is checked on the execution of every cell, the
invariant that for a cell to be executed, the kernel state must be as
if all preceding cells have been executed in order from an empty
kernel state is always preserved on cell execution.

However, modifications to the content or order of cells can also
decouple the program state from the text of the notebook. Thus,
the IoLab extension also listens for changes to the content and
ordering of cells. It does this by listening to all changes to the
notebook’s active cell: the cell currently selected by the user. This
fires whenever the user edits a cell and then leaves it, deletes a cell,
inserts a cell, moves cells around, or leaves a cell without editing
it. Therefore, the IoLab extension must determine which of these
operations occurred whenever the hook fires. It first compares the
current ordered list of cells to the previous list of cells. There are
five possibilities:

(1) If the current list is longer than the previous one, a cell has
been added.

(2) If the current list is shorter than the previous one, a cell has
been deleted.

(3) If the current list is the same length as the previous one but
the ordering of cell IDs within it is different, then a cell has
been moved around.

(4) If the current list is the same length as the previous one and
the ordering of cell IDs within it is the same, but the text
within a cell has changed, then a cell’s text has been edited.

(5) Finally, if the current list is the same length as the previous
one and the ordering of cell IDS within it is the same and
the text within all cells is the same, then there has been no
change to the ordering or content of cells—the user simply
left a cell without changing it.

In the case of the last possibility, no change to the kernel state is
needed. Likewise, if a cell has been added, then no change to the
kernel state is needed. This is because cells on addition are empty;
no code has been added to the notebook at this point. In all other
cases, however, the state of the kernel may need to be updated to
reflect the new text of the program.

In items 2–4, the IoLab extension determines where the change
to the cells occurred. If the first change to the cell list occurred after
the last executed cell, then the change to the cells cannot have any
effect on the state of the program run up to this point. Otherwise,
the extension instructs the kernel to revert the program state to
that directly before the first changed cell. If the change to the cells
was an edit to the text of the cell, then that cell is re-executed to

keep the notebook state consistent with the text of the notebook.
If not, then no cell is to be executed; only the state of the kernel
needs to change.

In order for the IoLab extension to instruct the kernel that it
needs to change its state before executing a cell, the IoLab extension
modifies the metadata of the cell being executed to include an
instruction to change the kernel’s state and the state to which the
kernel should be set. These instructions are parsed by the kernel.
To change the state of the kernel without executing code, the IoLab
extension sends an execute request to the kernel with the modified
metadata and pass as the code.

Whenever the IoLab extension sends any execution command to
the kernel, it receives a promise that resolves whenever the kernel
finishes executing the code. The promise resolves to true if the code
executed without error and false if an error occurred in execution.
If the code executed without error, then the IoLab extension updates
the last executed cell to be the cell that was executed successfully.

Since the IoLab extension works to keep the program state as if
the executed cells in the notebookwere executed in order after every
individual change to the notebook, the IoLab extension always
keeps the program state correct.

4.2 IoLab Jupyter kernel
The second part of IoLab is the IoLab kernel. The IoLab kernel is
build on top of the IPykernel[12], a Jupyter kernel implementing
the IPython interactive Python REPL. It has one key difference to
the IPykernel: it must change its state to according to instructions
provided by the IoLab extension. It does so by parsing the metadata
of executed cells to determine if a state change is needed. If it is,
the kernel loads in the previously-saved state requested by the
extension. Then, the kernel executes the cell code and finally the
new state is saved.

State loading and saving is accomplishedwith the dill[11] Python
library which includes functionality for dumping interpreter states
to and loading interpreter states from files stored on disk. The
kernel modifies the cell’s code before sending it to the IPykernel
interpreter. First, a prologue is added that imports the dill library.
If state is to be loaded, the prologue also includes the dill call that
loads in the correct state file from a temporary directory. This pro-
logue is appended to start the cell code. An epilogue to the cell code
is appended to the end of the code including the dill call to save
the state file to a temporary directory, as shown in fig. 4. The cell
code with the attached prologue and epilogue is then sent to the
IPykernel interpreter.

# Prolouge
%reset -f
import dill
dill.load_module("<prev-state-id>.dill")
# code cell body
...
# Epilouge
dill.dump_module("<new-state-id>.dill")

Figure 4: Wrapper user code with prologue and epilogue. The epi-
logue resets the Python Interpreter and loads the previously cached
program state. The prologue caches the interpreter state including
the results from executing the code cell’s body.
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4.3 IoLab notebook file I/O dependencies
As mentioned above, we do not track notebook file dependencies
in IoLab. This also means that if a notebook were to write to a file
and then read from the file or write to a file then overwrite that file,
we would not track that change nor would IoLab store a copy of
the original or changed version of the file. While this could lead
to cases where users overwrite data in files later on in notebooks,
in practice, this is not common. An analysis of notebook file I/O
dependencies found that no in studied notebooks overwrote was
data read from a file then later overwritten and in only in 27.5% of
studied notebooks was data written to a file and then later read[16].
Importantly, none of these file reads and writes are reads or writes
that could potentially be broken by “rolling back” program state.
Thus, file I/O in practice is not a major challenge for an IoLab-like
system.

5 EVALUATION
We conducted a pilot user study to understand how an in-order
computational notebook impacts scientists’ work. This pilot user
study is a preliminary step towards a full formal user study, which is
forthcoming. The primary research question we sought to address
was:

• RQ 1: How does IoLab change user workflows in data tasks?
Additionally, since we are currently developing IoLab, we sought to
answer the following questions about the current design of IoLab.

• RQ 2: How does IoLab affect scientists’ user experience?
• RQ 3: How can IoLab be improved to better serve users?

For our Institutional Review Board approved study, we recruited
𝑛 = 4 participants from scientific fields at the University of Wash-
ington. All participants were graduate students from the fields of
oceanography, psychology, and computer science, and had 8 ± 1.8
years coding experience, including 5.75 ± 2.06 years of Python ex-
perience. All participants have used Jupyter Notebooks in Python
previously, with most participants actively using Notebooks as a
tool in their research.

Participants were then asked to complete a series of coding tasks
designed to replicate the experience of developing a physical model
and exploring its consequences. All users used IoLab to complete
the task. We asked users to explore a common model in population
dynamics:

𝑑𝑥

𝑑𝜏
= 𝑟𝑥

(
1 − 𝑥

𝑘

)
− 𝑥2

1 + 𝑥2

where 𝑥 is the population, 𝜏 is time, 𝑟 is the growth rate, 𝑘 is the
carrying capacity. The task incrementally added complexity by
initially excluding terms (such as the predation term 𝑥2/(1 + 𝑥2)).
This is intended to bias users into revising and rerunning older
code cells, creating chances for execution order bugs. Other tasks
involved plotting solutions to this model with varying initial con-
ditions 𝑥 (0) = 𝑥𝑜 and parameter values 𝑟 ∈ [0.1, 0.99], as well as
performing a classic analysis of the "fixed-points" of the model (i.e.
the long-term stable populations). We included this analysis be-
cause it requires incremental revisions to the data-structures used,
again potentially cause execution-order bugs. Although the tasks
are designed to cause execution order bugs, all subjects were given
IoLab so no execution order bugs should actually occur. During

this process, users were asked to verbally share their thoughts and
experiences. We took notes on these responses and include them
in our analysis. Once users completed the coding portion, they
were asked to complete a written questionnaire recording their
reflections on the experience.

5.1 Results
We include participants’ verbal and written responses to the posed
research questions. Verbal responses were collected during the
coding task. Participants volunteered these responses without ex-
plicit prompting. Participants were asked a version of each research
question with different wording but similar semantic content. We
include the literal questions below.

5.1.1 Responses to RQ1. For the written portion we asked par-
ticipants “How did the IoLab kernel affect how you would normally
approach the challenge problems?". Their written responses were:
P1 “Usually, to avoid out of order execution issues, I’ll just restart

the kernel and run all the above cells. If I have cells that are
more computational, I’ll just rerun all of the cells underneath
the computational cells and have to keep track of which cells
I’ve re-executed and when I executed them. With the Iolab
kernel, I just didn’t even think about it."

P2 “I didn’t realize what the new IoLab kernel’s functionality
was until [an author] told me. From my previous experience
working with Jupyter notebooks, I formed a habit of copy and
pasting nearly all code relevant to a cell, such as constants,
to avoid dependencies on previous cells."

P3 “[IoLab] enforced cleaner coding. I really had to think through
some of what I wanted to try instead of just trying them be-
cause I know that some cells are re-executed. I like moving all
around the notebook and using the interact-ability of Jupyter
notebooks right now so this felt a little bit more rigid. I’m not
good at clean coding so this is a good learning opportunity."

P4 “I don’t trust notebooks, so I usually program defensively
when using them. I did like that the IoLab kernel seemed to
have more safety mechanisms built-in, like invalidating cells
that need to be re-run"

Participant verbal comments with respect to RQ1 were:
P1 “Usually, to avoid out of order execution issues, I’ll just restart

the kernel and run all the above cells. . . [or] keep track of
which cells I’ve re-executed and when. . . With [Iolab], I just
didn’t even think about it.”

P4 “I’ve develop a style to avoids the pitfalls of [traditional]
notebooks [including copying and pasting code and a Rust-
like ownership model for parameters]... I still do it out of
habit.”

IoLab changed the workflow of participants by preventing the
possibility of out-of-order execution errors. Each participant stated
that they various utilized workaround strategies to avoid out-of-
order execution errors, which are baked-in to their Jupyter notebook
workflows. Although some participants (e.g. P3) expressed that
IoLab did feel more rigid, overall users appreciated that IoLab would
allow them to simplify their workflow and reduce the need for
these workaround strategies to avoid errors. This results in IoLab
improving user’s trust in the results of their Jupyter Notebook code.

5



581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

CSE 503 2025, 19 March, 2025, Seattle, Washington Eleftheria Beres, Carlyn Schmidgall, and Ryan Zambrotta

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

5.1.2 Responses to RQ2. For the written portion we asked partic-
ipants “Overall, how did the IoLab kernel affect your experience in
Jupyter Notebooks? Feel free to address your ability to explore different
ideas/calculations, work efficiently, avoid bugs, and understand the
code of the notebook.". Their written responses were:

P1 “It seemed like it gave me a more normal coding experience
and had behavior I expected more compared to traditional
notebook engines."

P2 “I liked it a lot! I’d definitely try it out in my workflow to see
how quickly I could adapt to it - I am used to just mentally
keeping track of what cells I’ve ran and I don’t tend to form
new habits super well, but I’d definitely install it and try it
out!"

P4 “I think it’s a cool idea and addresses my biggest gripe with
Jupyter notebooks, which is how running cells out of order
results in an implicit DAG of data dependencies that the user
has to track. However, it honestly didn’t affect my experience
much because I normally work around the dependency issue
by repeating as much context as possible, and the study tasks
did not require repeated modifications to something like a
helper function. But I think this is an important part of the
experience to address."

Verbal comments with respect to RQ2:

P1 “I liked it a lot! I’d definitely try it out in my workflow to see
how quickly I could adapt to it!”

P2 “It gave me a more normal coding experience and had be-
havior I expected more compared to traditional notebook
engines”

P4 “Over time I’ve tried to stop using notebooks for my work
because their [reproducibility] is really bad.”

Overall, IoLab was received positively by study participants, who
felt that it enhanced their user experience in Jupyter notebooks.
Users appreciated that IoLab made extra steps to avoid out-of-
order execution errors unnecessary, and were excited to integrate it
into their workflow. However, participants also acknowledged that
adapting to new habits might take time, especially since strategies to
avoid out-of-order execution errors are so deeply baked-in to their
usage of Jupyter Notebooks. Participants expressed enthusiasm to
use IoLab in both teaching and research settings, where ensuring
standardized execution order is paramount.

5.1.3 Responses to RQ3. For the written portion we asked parti-
ciants “What features did you wish were present in the notebook to
help solve the problem?". Their written responses were:

P1 “I didn’t like that the cell output from cells belowwas removed
when you execute a cell above it, so I couldn’t compare the
value of a variable before and after I made a change to it."

P2 “I wish there was more autocomplete or code completion sug-
gestions. I can never remember if matplotlib expects "set_xlabel"
or "xlabel" or what order things should be passed to numpy
functions."

P3 “I wish I could see which cell it was executing instead of just
waiting."

P4 “I’d like more visual feedback as to which cells are invalid
and need to be re-run, that sort of thing."

Users suggested several ideas for desired features in IoLab. Most
user suggestions concerned providing more visual feedback on the
program state of cells, including clearer indications of which cells
require re-execution and which cells are currently running. Some
users also wished that IoLab retained previous cell outputs when
executing earlier cells, because this allows for the comparison of
output under different conditions. Users also requested enhanced
autocomplete and code suggestions for function names and argu-
ments.

5.1.4 Visual aids for invalidated cells. In general, users found visual
indication that a cell needed to be rerun to be useful. In IoLab this
is indicated by removing it’s run number (the brackets in fig. 2)
and clearing a cell’s output. However, the nature of work in a note-
book is exploratory so many code changes are made to examine
the difference in results. For this reason, participants expressed
conflicting opinions about the clearing of output cells. P1 preferred
that outputs persist longer so that they might examine the differ-
ence between cells whereas P3 preferred the clear indication that
a cell had not been run. A potential line of future work could be
an extension to the notebook where users can hypothesis a code
change and run it in a “fork" of the original program state and then
“commit" that code change after inspecting it’s output would resolve
both users concerns.

5.1.5 Caching. A major limitation in the designed tasks is that
all tasks were both relatively quick to recompute as well as used
relatively little memory so the effects of caching were not apparent.
For example, the largest computation asked of participants could
run in 15 seconds on an M1 MacBook, but could also be easily
optimized to take < 1s on the same hardware. Rerunning the entire
notebook could take 5-20 seconds but was never required by the
tasks as there were no "notebook-wide" dependencies. Most code
dependencies were designed to be within 4 cells but the actual
number varies on user coding style. The participants that tended to
copy-and-paste cells would have no code dependencies. Follow-up
experiments on IoLab could include tasks that involve making large,
in-place updates to arrays which would stress the caching in IoLab.

6 RELATEDWORK
6.1 Reactive execution
Reactive computational notebooks provide an alternative approach
to the traditional REPL-based notebooks. Unlike traditional Jupyter
Notebook kernels or REPLs, reactive kernels such as PlutoJL[15],
marimo[4], IPyFlow [1], and Observable[2] track cells’ dependen-
cies and reactively update all dependencies if a cell is updated—similar
to the execution model of spreadsheets such as Excel and Google
Sheets. This model of notebook prevents out-of-order execution
by maintaining a single, consistent state across all cells of a note-
book at all time. However, reactive notebooks lack any concept of
mutable state and sequential order of execution. Furthermore, the
order of cells on the page in a reactive notebook does not reflect
the order in which cells are executed.

6.2 Gathering execution trace
Nbgather is a tool developed to help manage messes in Jupyter
Notebooks[8]. Nbgather keeps a log of cells as they are executed,
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tracking the execution history of a notebook. Then, it generates
minimal program slices from the execution log to present to pro-
grammers so they can clean notebooks and discover the derivation
of their results. Nbgather presents programmers with in-order, min-
imal slices of notebooks; however, it does not preserve the on-the-
page execution order for cells. The minimal slice may have cells in
a different order than they appeared in the original notebook since
slices originate from the kernel’s execution log, not the notebook’s
program text.

6.3 Forking and backtracking
Fork It! is a Jupyter Notebook tool that allows users to manually
backtrack and fork notebook execution at a chosen cell to evaluate
different possibilities[17]. With Fork It!, programmers are able to
fork the notebook at a given point, reverting the state of the note-
book back to the state at that point and allowing users to take an
alternate approach. Fork It! implements manual backtracking by
loading state from disk at manually set fork points in the notebook.

6.4 Lineage tracking
NBSafety is a tool that provides programmers with visual feedback
when Jupyter Notebook cells may be “stale” due to the effects of
executing other notebook cells[10]. NBSafety traces the lineages
of notebook cells using static and dynamic analysis techniques to
identify when cells may need to be re-executed due to updates
elsewhere in a notebook. NBSafety does so while preserving exist-
ing notebook semantics, thereby notifying Jupyter Notebook users
when cells may present safety errors while leavings programmers
to determine when to re-execute cells.

7 CONCLUSION
We presented IoLab, a JupyterLab extension and Jupyter kernel
that eliminates out-of-order execution in computer notebooks in
JupyterLab by enforcing a linear order of execution. We described
the design principles behind IoLab and detailed the technical im-
plementation of the system. In a pilot qualitative user study with
scientists at the University of Washington, we investigated how
scientists change their workflows when using an in-order compu-
tational notebook.
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