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Abstract
Large Language Models (LLMs) are frequently used by software

developers for code generation, that is, the task of generating code

snippets that adhere to specified natural language constraints. Ac-

curate and reliable code generation is typically achieved by scaling

the model size to billions of parameters, or training on trillions of

tokens of code-specific data. Hence, modern state-of-the-art code

LLMs tend to be proprietary (without open weights and only acces-

sible via API, e.g., GitHub Copilot) or extremely large (i.e., around

100 billion parameters). Both the exorbitant cost and size of these

models restrict developer accessibility and hinder the democrati-

zation of code LLM research; to this end, we propose to explore

methods to improve code generation performance in small (around

1 billion parameters), open-weighted language models. In particu-

lar, we are interested in inference-time techniques, a broad class of

training-free methods that boost model performance by spending

extra compute during inference time.
1
We explore equipping small

language models with two such techniques, context-aware decod-

ing (CAD) and retrieval-augmented generation (RAG), and find that

they lead to improved code generation abilities, thereby minimizing

the performance gap against larger or proprietary models, while

being cheaper and faster to run. We evaluate on MBPP and Hu-

manEval, two popular, Python-based
2
code generation benchmarks.

We show that CAD especially boosts performance, significantly

increasing pass@10 scores (e.g., from 0.30 to 0.39 on HumanEval

and from 0.40 to 0.50 on MBPP), while RAG provides complemen-

tary gains with minimal impact on throughput. Combined, these

inference-time enhancements are observed to deliver up to 31%

accuracy improvements over baseline methods with only a 13% re-

duction in throughput on certain comparisons, underscoring their

potential to democratize access to high-quality code generation for

resource-constrained developers.
3

1 Introduction
Large language models (LLMs) show strong performance in do-

mains such as code generation [7, 29]. However, many software

developers and organizations cannot fully leverage large open mod-

els due to the steep infrastructure costs and operational challenges

that scale linearly with their size [34, 4, 25]. This limitation hampers

accessibility across a variety of domains: software teams with strict

1
Note that in this work, we use ‘inference-time’ and ‘test-time’ interchangeably.

2
The scope of this project is restricted to Python-based code generation.

3
Project code is released at: github.com/jacqueline-he/cse503.

data governance requirements cannot rely on proprietary cloud-

based solutions, while individual developers, small businesses, and

academic researchers lack the computational resources to locally

deploy a massive model. As a result, the potential of state-of-the-art

LLMs remains unrealized for a significant user base.

Example use case. Consider a software engineer at a mid-

sized healthcare startup who wants to integrate an LLM-driven

code-generation feature for internal analytics scripts. Strict pri-

vacy regulations preclude sending patient data or generated code

to external services. Although large open models (e.g., the largest

LLaMA-3 model is 405B parameters) exist, the startup’s on-premise

GPU nodes may lack the necessary capacity to run the model effi-

ciently[2]. Our project targets such scenarios by focusing on smaller,

open-weight models and augmenting them with inference-time

techniques to approximate or even rival the performance of larger

LLMs on Python code generation tasks.

Closed-source LLMs such as GPT-4 and Codex [7] are state-

of-the-art in code generation, often surpassing open-weight mod-

els [13]. But even open-weight models require significant resources

to deploy (e.g., multiple high-end GPU nodes, higher VRAM) and

incur significant operational overhead. For many organizations

and individual developers, the scalability challenges—both in terms

of compute cost and maintenance complexity—render these mod-

els impractical for day-to-day use, especially under stringent data

governance [18] or budgetary constraints.

In contrast, smaller open LMs (3B parameters or less) take up 6GB

of VRAM or less, and can be deployed on a single consumer GPU,

leading to lower operational costs, simpler maintenance, and pro-

vide transparent model internals for security audits [34].
4
However,

these models tend to underperform on popular code-generation

benchmarks, producing outputs that contain malformed syntax or

are more prone to logical errors than larger models. (While these

benchmarks highlight the performance gap, the issue remains that

such shortcomings directly affect the utility of smaller models in

real-world coding tasks).

To this end, we hypothesize that inference-time techniques—

training-free methods that allocate additional compute at test time—

can bridge this performance gap.

In this work, we investigate two such techniques: context-aware

decoding (CAD) and retrieval-augmented generation (RAG), which

are commonly applied to knowledge-intensive tasks. Their utility

4
As a practical example, one can comfortably run a 3B model in half-precision using a

standard 2023 MacBook Pro (M3 chip) with 8GB RAM.

https://github.com/jacqueline-he/cse503
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Figure 1: Trade-off between functional accuracy of code gen-
eration and ease of deployment. Large, proprietary models
exhibit a high-accuracy in code-generation tasks. However
they are not easy to train and deploy due to their size. Smaller
models are easy to deploy but exhibit low accuracy in code-
generation tasks. Proposed inference-time-toolkit (smaller
models + inference-time techniques) would allow both ease
of deployment and a significant improvement in accuracy.

to reasoning-heavy tasks (i.e., code generation) remains unexplored

in the current literature.

Our experiments using a state-of-the-art 1B LM (Llama 3.2 1B) on

two widely used Python-based evaluations, MBPP and HumanEval,

yield several key insights:

• CAD consistently boosts accuracy: We identify CAD as

a particularly robust inference-time technique that strictly

improves code generation performance across the board.

For instance, with Llama3.2 1B Instruct, CAD improves

pass@10 on HumanEval from 0.30 to 0.39 and on MBPP

from 0.40 to 0.50. CAD also strictly outperforms other

inference-time baselines, namely chain-of-thought prompt-

ing (CoT) and self-consistency (SC). While combining CAD

with RAG sometimes yields similar or slightly dampened

improvements, CAD alone reliably enhances accuracy, al-

though at the cost of roughly halving throughput.

• RAG offers modest, efficient gains: RAG preserves the

vanilla model’s throughput while offering minor accuracy

improvements, albeit with sensitivity to retrieval quality. It

performs similarly to Chain-of-Thought (CoT), marginally

improving accuracy but also negligibly affecting through-

put.

• Inference-time techniques help improve the perfor-
mance gap against larger models: For example, while

the vanilla Llama3.2 1B model achieves a pass@10 of 0.30

on HumanEval and 0.40 on MBPP, applying CAD boosts

these numbers to 0.39 and 0.50, respectively. These re-

sults approach those of a much larger model—Gemma2

2B Instruct, which attains 0.41 on HumanEval and 0.50

on MBPP—demonstrating that inference-time methods can

narrow the performance gap between smaller and larger

models.

• Inference-time techniques can surpass domain-specific
training: Notably, vanilla decoding with a code-specific

model (StarCoder 1B) achieves a pass@10 of only 0.29 on

HumanEval and 0.43 on MBPP. In contrast, inference-time

techniques on top of a general-purpose, instruction-tuned

model (Llama3.2 1B) consistently yield higher accuracy,

with CAD reaching 0.39 on HumanEval and 0.50 on MBPP.

This suggests that applying additional compute during in-

ference can not only bridge but even surpass the perfor-

mance achieved through domain-specific fine-tuning.

2 Related Work
2.1 LLMs for Code Generation
Modern LLMs demonstrate high accuracy across many automated

code-related tasks, from code completion [19] to code repair [36] to

code translation [9]. In particular, the task of code generation, which
we define as the task of translating natural language into source

code, has attracted significant interest beyond academic research,

leading to the development of popular LLM-based coding assistants

such as GitHub Copilot, CodeGeeX, and Amazon CodeWhisperer.

Enhancing an LLM’s ability to generate syntactically correct and

semantically meaningful code is primarily achieved in two ways:

by pre-training a larger model on more general-purpose data, or

by fine-tuning on specialized code datasets.

In the first way, [32] shows that general language modeling abil-

ities scale smoothly (following an approximate power-law) with

the number of model parameters and training data samples. Code

generation is acquired implicitly, along with other general language
abilities, during pre-training; large language models today encom-

pass billions of parameters and are pre-trained on trillions of tokens

in an unsupervised fashion, typically on web-scraped texts that

include some code data. In a comprehensive study across multiple

model families on the HumanEval benchmark, [37] shows that off-

the-shelf code generation performance improves with increased

model size. However, larger models require exponentially more

floating point operations per second (FLOPS), memory, and par-

allel processing power during both training and inference. This

means that usage of larger models is slower, more costly, and incurs

a larger carbon footprint [10]. Another complication is that the

largest LMs (i.e., > 100B parameters) tend to be closed-source to

varying degrees. Some LLMs such as GPT-3 [6] or Codex [7] are

only available as black-box APIs, and therefore cannot be trained.

A second way to improve code generation abilities without

changing the model size is via a final stage of training on in-domain,

high-quality code data [22]. For example, models such as CodeL-

lama [22], CodeT5 [29], PolyCoder [35], and Codex [7] are either

trained from scratch on code-only data, or are further fine-tuned

on code-only data. On general coding benchmarks, these code-

specific models outperform their size-matched, domain-agnostic

counterparts [37], underscoring the utility of domain-specific train-

ing. Yet one prominent trade-off to domain-specific training is the

loss of generalization: the model may acquire more domain-specific
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knowledge, at the cost of forgetting other general skills, a phenom-

enon known as catastrophic forgetting [16]. Furthermore, domain-

specific fine-tuning requires careful curation of domain-specific

data, which may rely on automated quality-filtering techniques

that further require compute [1].

2.2 Inference-Time Techniques
Due to the compute and effort-intensive challenges that come with

training language models, a line of research in inference-time tech-
niques has recently become popular. Inference-time techniques do

not require additional learning or weight updates, and operate only

during the model’s forward pass at test time to improve end task

performance [8]. While inference time techniques boost end task

performance in models of all size, smaller models generally expe-

rience larger relative gains. Therefore, one compelling aspect of

spending more test-time computation is that it may allow a small

model to match up to larger models; in a FLOPs-matched evalua-

tion, [25] finds that careful allocation of inference-time compute

can allow a small model to outperform a 14x larger model.

Chain-of-thought (CoT) prompting [14] and self-consistency

(SC) prompting [28] are two simple inference-time techniques that

have been shown to improve general reasoning performance, in-

cluding code generation. In chain-of-thought prompting, the model

is first asked to decompose a problem into a series of reasoning

steps, which can later be verified for consistency. Self-consistency

builds on this idea by generating multiple reasoning paths and

selecting the most consistent output, thereby reducing variance

and improving reliability. The idea behind self-consistency is that a

single reasoning path may contain errors due to the LM’s inherent

variability; sampling multiple diverse reasoning paths and selecting

the most consistent answer diminishes such a possibility.

As CoT and SC are widely used and known to boost code gener-

ation performance in language models, we consider them as com-

parison baselines.

Besides reasoning tasks, inference-time techniques have also

been effective on knowledge-intensive tasks that require accurate

factual recall. Context-aware decoding [24] mitigates unwanted fac-

tual hallucinations in generated output, by contrasting the prob-

ability distribution of candidate tokens when conditioned on a

prompt witht context versus a version without context; this forces

the model to adhere more closely to contextual knowledge. Addi-

tionally, Retrieval-Augmented Generation (RAG) [27] integrates

external knowledge sources by retrieving relevant documents from

a non-parametric datastore, thus enhancing the model’s ability to

ground itself on external text and generate more factual answers.

Note that it is still an open question as to how these inference-time

techniques would fare on reasoning-intensive tasks that do not

require factual memorization. Therefore, we aim to explore their

utility in code generation, a novel domain.

3 Proposed Approach
3.1 Language Models
We predominantly work with Llama-3.2-1B-Instruct [11], a state-

of-the-art, small (i.e., 1.24 billion parameters), open-weighted, au-

toregressive language model that has undergone several phases of

post-training to align with human behaviors [20]. Note that this

model is not domain-specific, i.e., it has not undergone a training

phase using exclusively code data, and that the training data com-

position is not disclosed. Given our time and compute constraints,

we focus on models in the 1B size range.

3.2 CAD and RAG
Recent work has indicated that applying additional compute at

inference time can benefit natural language tasks, resulting in per-

formance gains without the need for additional training [25]. For

example, prompting methods such as Chain-of-Thought [14] or

Self-Consistency [18] have been found to enhance code genera-

tion performance. In this section, we explore the viability of two

inference-time techniques, which have been originally proposed

for knowledge-intensive tasks, on code generation.

3.2.1 Context-Aware Decoding (CAD). Context-aware decoding

is a technique proposed by [24] that encourages greater prompt

adherence, and has been shown to benefit context-reliant tasks, such

as summarization or open-book question answering. The intuition

behind CAD is that it increases context reliance by contrasting

the probability distributions of output with and without context.

Formally, assume a language model 𝜃 , an input instruction 𝑥 , and

some context 𝑐 . The normal way to sample the output sequence 𝑦

can be represented (at the 𝑡-th step) via

𝑦𝑡 ∝ exp logit𝜃 (𝑌𝑡 |𝑐, 𝑥,𝑦<𝑡 ) . (1)

CAD proposes to upweight reliance on the context 𝑐 by fac-

toring out prior knowledge from the model’s context-less output

distribution in a contrastive manner, like so:

𝑦𝑡 ∝ softmax[(1 +𝛼)logit𝜃 (𝑦𝑡 |𝑐, 𝑥,𝑦<𝑡 ) −𝛼 logit𝜃 (𝑦𝑡 |𝑥,𝑦<𝑡 )], (2)

wherein 𝛼 is a controllable temperature term (and when set to 0,

reduces to regular decoding). Note that CAD requires the LM to take

two forward passes, so it is computationally twice as expensive as

normal inference. We hypothesize that aside from natural language

tasks, CAD may also benefit formal language tasks such as code;

for example, on a coding completion task such as HumanEval, the

LM ought to pay particular attention to the program prompt.

3.2.2 RAG. Retrieval-Augmented Generation (RAG) refers to a

paradigm in which during inference time, input text is concatenated

with semantically similar context retrieved from a static, external

datastore, and passed to a languagemodel (formally, the reader) [27].
The datastore is a non-parametric collection of document em-

beddings, and recent work has found that scaling the datastore can

enable a smaller language model to surpass larger language models

on a broad set of upstream and downstream knowledge-intensive

tasks [23]. While RAG confers many benefits such as parameter

efficiency, less hallucination, and the ability to provide attributions

on knowledge-intensive tasks [27], it has not been widely applied to

reasoning-intensive tasks such as code generation. A relatively new

analysis on retrieval-augmented code generation [30], only tests

LMs of a limited size range (i.e., > 7B parameters) and datastores

that are general-purpose or mixed-quality (i.e., scraped code from

GitHub), but found only marginal improvements.
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As our evaluation benchmarks are all Python-centric, we propose

to experiment with RAG-assisted code generation by building and

retrieving from a high-quality datastore of Python library documen-

tation provided by devdocs.io following [38].
5
Intuitively, this is

similar to how a human programmer might reference official code

manuals or documentation when writing out a program. Following

standard practice, we convert each document into document em-

beddings and build an index across all embeddings using the FAISS

toolkit
6
and BGE, a state-of-the-art dense retriever.

7
Note that for

our use case, it does not matter if the data used in the datastore

overlaps with Llama 3.2 1B’s training data. Even if the training data

contains some of the documentation, retrieval ensures the model

references the most relevant and correct details at generation time,

thereby filling in gaps in the model’s knowledge. We retrieve the

top-𝑘 (where 𝑘 = 5) documents for RAG.

3.2.3 Stacking inference-time approaches. Finally, we are interested
in seeing if there is any additive performance benefit from merging

our two proposed approaches (i.e., combining RAG with context-

aware decoding); note that this is possible as these approaches

operate at different stages of the LM generation pipeline.

Specifically, RAG augments the original input with additional

context, while CAD directlymodifies themodels’ decoding equation

to force model reliance on context. Thus, we believe these two

techniques would complement each other effectively (RAG + CAD).

4 Evaluation
In this section, we describe the evaluation datasets and metrics

used, as well as baselines that we compare our proposed approaches

against.

4.1 Datasets
We measure code generation performance using two popular code

generation benchmarks, Mostly Basic Python Problems (MBPP) [3]

and HumanEval [7]. Both MBPP and HumanEval encompass basic

Python programming questions, and are typically evaluated by

executing the generated code against a set of provided unit tests.

MBPP (test split) consists of 164 crowd-sourced basic Python pro-

gramming problems, including topics such as fundamental program-

ming and standard library functionality. Each problem is paired

with three unit tests in the form of assert statements.

HumanEval (dev split) consists of 90 handwritten Python pro-

gramming problems that test topics such as language comprehen-

sion, algorithms, and simple mathematics. Each problem includes a

function signature, docstring, body, and unit tests to assess func-

tional correctness.

4.2 Metrics
4.2.1 Functional correctness. For code generation, we adopt the
pass@k metric [7] to measure the execution correctness of pro-

grams.

For the pass@k metric, 𝑘 code samples are generated per prob-

lem. Each generation is executed as real code, and a problem is

5
Specifically, using this dataset of 34K samples:

huggingface.co/datasets/code-rag-bench/library-documentation
6https://github.com/facebookresearch/faiss
7https://huggingface.co/BAAI/bge-base-en

considered solved if any sample passes all the unit tests. The total

fraction of problems solved is reported. Formally, with 𝑛 as the total

number of samples, and 𝑐 as the number of correct samples,

pass@k := E

[
1 −

(𝑛−𝑐
𝑘

)(𝑛
𝑘

) ]
. (3)

Pass@k is a common evaluation metric for code generation. For

one, [7] finds that pass@k is an unbiased estimator, which allows

for fair comparison across different numbers of samples. Further-

more, match-based metrics such as BLEU and ROUGE, which were

commonly used for code generation evaluation in the past, are

insufficient at assessing functional correctness. Following standard

practice, we report pass@k with k set to 1, 5, and 10.

4.2.2 Efficiency. Alongside functional correctness, we are also in-

terested in evaluating the efficiency of model generations. Ideally, a

small model that takes up additional inference-time compute should

still generate more efficiently than a large model that uses vanilla

generation.

We measure efficiency in terms of throughput (average num-

ber of tokens generated per second) and memory overhead in MB
during token generation (the difference in VRAM before and after

inference, using the PyTorch CUDA framework).

4.3 Baselines
First, we consider vanilla generation using Llama 3.2-1B-Instruct

(i.e., without any inference-time modifications) as a baseline; this

allows us to discern whether our proposed techniques show any

improvement.

One question is how our proposed inference-time techniques–

CAD and RAG–stack up against existing inference-time techniques

that have been found to improve code generation. We compare

both against chain-of-thought (CoT), a prompting technique that

encourages models to explicitly think through each step.
8
Another

prompting baseline is self-consistency (SC), in which instead of only

generating once, the model generates multiple outputs to the same

input (using a high temperature term, to encourage stochasticity).

Typically, the most frequent answer is taken as the final answer (i.e.,

majority voting) if the output space is small (i.e., multiple choice

options). However, in our case, we must choose between multiple

long-form code generations, where exact matches are rare and

frequency-based voting becomes unreliable. Therefore, we adapt

SC by selecting the generation that is most consistent with the

others, defined as the sequence with the highest average pairwise

embedding similarity to the rest.

Another question is, how well can 1B models with our inference-

time techniques compare against a model twice its size? This is

especially interesting in the case of CAD, which requires two for-

ward passes, and thus roughly doubles the inference cost per sample.

Thus, an appropriate compute-matched comparison would be CAD

using a 1B LM versus vanilla decoding using a 2B LM. Given that

Llama 3 does not have a 2B model, we compare against Gemma 2

8
The simplest formulation of CoT is to append “Let’s think step by step" to the

prompt in a zero-shot manner (i.e., without any demonstrations), to encourage the

model to first emit its reasoning process before arriving at the answer.
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2B as a proxy [26].
9
Note that this does not constitute a perfectly

fair comparison; however, Gemma and Llama are both architec-

turally similar (decoder-based Transformers) and likely pre-trained

on similar data distributions (general Internet data).

A final question is, how well can 1B models with our inference-

time techniques compare against size-matched models that have

undergone domain-specific training? The fairest comparison would

be vanilla generation with a CodeLlama 1B model (i.e., Llama- 3.2-

1B-Instruct finetuned further on code data), which does not exist.

As a proxy, we would compare against vanilla generation with

StarCoder-1B [15] fine-tuned on code exercises,
10

a comparably-

sized model that is instruction-tuned and has been trained on 80+

programming languages from permissively licensed code data.

5 Results
Table 1 and Table 2 show the full empirical results for HumanEval

and MBPP, respectively, on functional accuracy (pass@k), through-

put (average tokens generated per second), and memory overhead

(the total change in VRAM). Our takeaways are as follows:

5.1 Empirical Takeaways
CADconsistently boosts accuracy:CADachieves the best pass@k

compared to the vanilla baseline, and the other inference-time base-

lines. On HumanEval, both CAD and CAD+RAG raise pass@10

from 0.30 (vanilla) to 0.39. On MBPP, CAD alone boosts pass@10

from 0.40 to 0.50, whereas CAD+RAG only reaches 0.48. This indi-

cates that CAD reliably improves accuracy; however, adding the

retrieval component (as in CAD+RAG) does not always yield ad-

ditional benefits—in fact, on MBPP, it may slightly dampen the

improvement observed with CAD alone. Notably, these accuracy

gains come at a cost: approximately a 50% reduction in throughput.

CoT and RAG offer modest improvements with high ef-
ficiency: CoT yields moderate accuracy gains without affecting

throughput, with more pronounced improvements observed at

higher k-values (pass@5 and pass@10). Likewise, RAG maintains

roughly the same throughput as the vanilla setting while delivering

slight accuracy improvements in most cases. Its performance, how-

ever, is sensitive to the quality of retrieval; if the datastore fails to

return relevant documents for a given query, irrelevant information

may mislead the model. This problem is particularly salient if the

datastore is small and retrieved context is always used, which is our

case here. We hypothesize that with more sophisticated RAG tech-

niques (i.e., selectively only using retrieved context if it is deemed

relevant to the task) may lead to more discernable improvements.

SC delivers limited accuracy gains at a high computation
cost: Despite some improvement in pass@k on HumanEval, SC

does not largely improve over the vanilla baselines onMBPP (except

on pass@5). However, SC dramatically reduces throughput by a

factor of five (as we obtain 5 generations per sample).

Model size leads to markedly better accuracy, at the ex-
pense of speed and memory: Using a larger model achieves

higher absolute accuracy, with the best pass@5 and pass@10 across

the board for both MBPP and HumanEval. However, this comes

at the expense of lower throughput (from 110 to 22 tokens / sec.

9
https://huggingface.co/google/gemma-2-2b-it

10https://huggingface.co/jinaai/starcoder-1b-textbook

for Humaneval, and 70 to 37 tokens / sec. for MBPP) and higher

memory overhead (from 0.01 to 0.04 average MB for HumanEval,

and 0.08 to 0.14 average MB for MBPP); the 2B LM achieves the

worst throughput and memory overhead in all cases.

Some inference-time techniques, especially CAD, with
a general-purpose model can generally surpass the perfor-
mance of a code-specific model with vanilla decoding: Cu-
riously, vanilla decoding with a code-specific LM (StarCoder 1B)

does not lead to markedly higher pass@k compared to vanilla de-

coding with a size-matched general instruction-tuned LM (Llama

3.2 1B). We think this may be due to the nature of our prompts,

which employ a lot of freeform natural language instructions (e.g.,

“Return only code for the completed function, with no additional

explanation, print statements, or unit tests"), which Llama might

be better-equipped to handle than StarCoder, which is primarily

trained on structured code data. Compared to vanilla decoding with

StarCoder 1B, CoT, CAD, and CAD+RAG on Llama 3.2 1B show

strictly better improvement across both benchmarks.

5.2 Accuracy vs. Efficiency
Figure 2 and Figure 3 show visualizations of the accuracy vs. effi-

ciency (throughput, memory overhead) trade-off for HumanEval

and MBPP, respectively. Note that no setting unanimously domi-

nates with the best accuracy, throughput, and memory.

Thus, the optimal balance between efficiency and pass rate is

highly dependent on one’s particular use case. For example, some

techniques (e.g., CAD, or using a larger LM) may be preferable

when accuracy is paramount, while others (e.g., RAG or CoT) might

be preferred if maintaining throughput is critical.

6 Conclusion
We investigate the potential of inference-time techniques, to en-

hance code generation performance in small, 1B-scale language

models, without the need for any training. Specifically, we study

context-aware decoding (CAD) and retrieval-augmented generation

(RAG) on two Python-based benchmarks, MBPP and HumanEval.

Our work is the first to demonstrate that both CAD and RAG, which

are commonly used on knowledge-intensive tasks, can also yield

significant improvements in code generation (a new domain), with

CAD showing particularly robust performance gains.

Our results suggest that inference-time techniques—especially

CAD—can enable a general-purpose, instruction-tunedmodel (Llama

3.2 1B) to achieve competitive, and in some cases superior, perfor-

mance relative to a size-matched model trained specifically on code.

Moreover, these techniques can help narrow the performance gap

between smaller and larger models, while offering advantages in

terms of throughput and memory efficiency.

In light of these findings, we recommend that the community

consider inference-time techniques as a viable alternative to exten-

sive domain-specific fine-tuning or scaling up model sizes. Doing

so could lead to more efficient and cost-effective deployments for

code generation tasks, enabling improved performance without the

need for larger models or additional training, and is a preliminary

step towards democratizing LLMs.
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Technique pass@1 (↑) pass@5 (↑) pass@10 (↑) Throughput (↑) Memory Overhead (↓) Base Model (and Size)
Vanilla 0.13 0.26 0.30 110 0.01 Llama 3.2 1B Instruct

CAD 0.17 0.31 0.39 58 0.01 Llama 3.2 1B Instruct

RAG 0.14 0.29 0.30 110 0.02 Llama 3.2 1B Instruct

CAD + RAG 0.17 0.32 0.39 56 0.02 Llama 3.2 1B Instruct

SC 0.12 0.28 0.34 22 0.01 Llama 3.2 1B Instruct

CoT 0.12 0.29 0.37 110 0.01 Llama 3.2 1B Instruct

Vanilla 0.20 0.34 0.41 22 0.04 Gemma 2 2B Instruct

Vanilla 0.16 0.26 0.29 100 0.01 StarCoder 1B

Table 1: Inference-time technique results on HumanEval. Best numbers for each metric are in bold.

Technique pass@1 (↑) pass@5 (↑) pass@10 (↑) Throughput (↑) Memory Overhead (↓) Base Model (and Size)
Vanilla 0.20 0.35 0.40 70 0.08 Llama 3.2 1B Instruct

CAD 0.23 0.46 0.50 39 0.08 Llama 3.2 1B Instruct

RAG 0.17 0.38 0.42 71 0.09 Llama 3.2 1B Instruct

CAD + RAG 0.24 0.47 0.48 38 0.09 Llama 3.2 1B Instruct

SC 0.19 0.38 0.40 14 0.08 Llama 3.2 1B Instruct

CoT 0.21 0.38 0.41 72 0.08 Llama 3.2 1B Instruct

Vanilla 0.19 0.48 0.50 37 0.14 Gemma 2 2B Instruct

Vanilla 0.19 0.36 0.43 69 0.08 StarCoder 1B

Table 2: Comparison of inference-time techniques on MBPP. Best numbers for each metric are in bold.

7 Limitations
There are several limitations to our work. To begin, our evalu-

ation is restricted to two Python-based benchmarks (MBPP and

HumanEval). Python is a popular, high-resourced programming

language with a readable and intuitive syntax that is similar to

natural language. Python is also the dominant language of many

pre-training code datasets, such as The Stack [17]. Therefore, it is

unknown whether our findings can generalize to lower-resourced

languages, or ones with more complex syntax. Furthermore, both

benchmarks would not have as much real-world applicability in

more sophisticated instances that involve larger codebase reason-

ing, long-horizon debugging, or other practical considerations such

as efficiency, security, readability, or maintainability.

Recent studies [5, 21] have surfaced the possibility of bench-
mark contamination, in which potential data leakage from common

evaluation sets into the training data of the language model may

artificially boost its code generation performance. Furthermore, the

models we use are all open-weight, but not entirely open-sourced

(i.e., the training pipeline and datasets are not publicly released),

meaning that there is a non-negligible risk of evaluation contami-

nation, and that model performance could potentially be partially

attributed to the presence of evaluation data in training data. This

concern is especially salient as MBPP and HumanEval are popular

evaluation datasets.

However, a recent systematic study [21] finds that Llama 3 (the

model family we mainly use), which is trained on larger and better

decontaminated data, shows limited signs of test set leakage across

multiple coding evaluations. Furthermore, contamination is also

less of a problem due to the small models we use. Memorization is

an ability that scales with model capacity, and so larger models are

better at storing and recalling examples verbatim from training data.

Therefore, while benchmark contamination is a general concern, it

is less significant in our case due to our choice in model family and

model size.

Finally, while our findings are promising, our experiments are

non-exhaustive, primarily due to compute budget reasons. We leave

a more comprehensive and varied baseline evaluation to future

work. For example, we use Llama 3.2 1B Instruct as our base model,

as it is small enough to run on a single 40GB GPU. While it is the

most fair and meaningful to compare inference-time techniques

against the vanilla baseline for the same basemodel, we had to use
models from different families (i.e., Gemma 2B and StarCoder 1B)

as the Llama-specific versions (a Llama 2B model or a CodeLlama

1B model) do not exist.

In order for our findings to be truly generalizable, we would

have to additionally evaluate on models from other model fami-

lies and across different parameter scales (i.e., 8B, 13B, 70B). For

our findings to be robust and statistically significant, we would

need to do multiple runs across different random seeds for each set-

ting. We also think our study could benefit from a more exhaustive

ablation across various design choices, for example, different decod-

ing temperatures, different values of 𝛼 for CAD, different choices

in datastore composition for RAG (such as actual code instead of

official Python documentation), or different prompting formats.

Finally, our inference-time baselines (CoT and SC) are simple and

employ very straightforward techniques (prompting and sampling).

Future work can compare CAD and RAG across current state-of-the-

art inference-time techniques that employ backtracking, domain

knowledge, or refinement algorithms [33].



Inference-Time Techniques for Efficient Code Generation

(a) (b) (c)

(d) (e) (f)

Figure 2: Accuracy vs. Throughput (first row) and Accuracy vs. Memory Overhead (second row) trade-offs for inference-time
techniques on HumanEval. Note that the x-axes are inverted for memory overhead. In all figures, positive direction of the line

y=x is direction (high accuracy, high efficiency) with the best trade-off.
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A Appendix
A.1 Decoding details
Across all decoding settings, we employ nucleus sampling [12] (a

probabilistic decoding strategy that balances fluency and diversity)

with a top-p of 0.9, a temperature of 0.8, and a maximum sequence

length of 128.

Generation was quite slow as we used HuggingFace instead of

speed-optimized inference frameworks such as vllm; we could not

use the latter as modifying it to support CADwould take substantial

work. Furthermore, we could only support single-GPU runs due to

compute constraints (some of us only had access to Google Colab).

Adapting to a distributed inference setting in future work could

definitely speed up the iteration of our experiments.

We run evaluation for both benchmarks in a multiprocessed fash-

ion using the pass@k code provided by OpenAI’s HumanEvaluation

package.
11

A.2 Inference-time technique implementation
details

A comparison of the four inference-time techniques used in this

paper (CAD, RAG, CoT, SC) are in Table 3. Prompts for each setting

are in Table 4.

Further details for each inference-time method are provided

below.

CAD. We implemented Context-Aware Decoding following code

from [24], setting 𝛼 = 0.5. CAD requires a forward passes of the

model across two input sequences, the context input (which is

the entire prompt, including instruction, function docstring, and

function signature) and the question input (which is just the function
signature). Note that CAD is the only technique that changes the

generation equation; all other techniques use standard decoding.

RAG. We constructed a datastore using Python library documen-

tation. Following standard practice [23], we split documentation

into 500-word (as determined by whitespace) and append the doc-

umentation title (e.g., cmath.isclose) to the beginning of each

chunk. We use the state-of-the-art BGE retriever released by BAAI.

In total, our datastore consists of 44007 chunks.

Furthermore, we performed offline retrieval (with 5 docs per

sample) on the two evaluation sets, MBPP and HumanEval, using

the context for each evaluation’s test set as the retrieval query. Due

to time and compute constraints, we only evaluate with the top-1

document for the RAG setting.

CoT. Following [31], we instruct the LM to first think step-by-

step about the solution before generating the rest of the function.

SC. We implement self-consistency by generating 5 sequences

per evaluation sampling, using the same prompt as vanilla decod-

ing, and a relatively high temperature (0.8) for sampling diversity.

One problem in our case is that generations are long-form, so it is

difficult to find the most consistent generation out of five with a

simple string equality check (unlike, say, a particular task in which

the possible set of outputs is very small). Therefore, we identify the

11https://github.com/openai/human-eval

most consistent generation by computing pairwise embedding sim-

ilarities and using the output with the highest total similarity. We

encode generations with a small sentence embedding Transformer

model, "all-mpnet-base-v2".12

12https://huggingface.co/sentence-transformers/all-mpnet-base-v2
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Technique Multiple Forward Passes? External Knowledge? Vanilla Decoding? Modification

CAD ✓(2 passes) ✗ ✗ Modifies decoding algorithm

RAG ✗ ✓ ✓ Augments input prompt

SC ✓(5 passes) ✗ ✓ Samples multiple outputs

CoT ✗ ✗ ✓ Augments input prompt

Table 3: Comparison of inference-time techniques for improving code generation.

Setting Input Prompt

Vanilla, SC "Your task is to complete a Python programming problem, given its function
signature and docstring. Return only code for the completed function, with no
additional explanation, print statements, or unit tests. \n\n {prompt}"

CAD "Your task is to complete a Python programming problem, given its function
signature and docstring. Return only code for the completed function, with
no additional explanation, print statements, or unit tests. \n\n Context:
{function_docstring} \n {function_signature}"

RAG "Your task is to complete a Python programming problem, given its function
signature and docstring. Return only code for the completed function, with no
additional explanation, print statements, or unit tests. Here is some context
that may be helpful: {rag_doc} \n\n {prompt}"

CoT Your task is to accurately complete a Python programming problem, given a
function description. Before completing the function, think step by step about
the solution. First, outline the approach based on the function signature and
docstring. Break down the problem, identify edge cases, and describe the logic
needed. Then, implement the function accordingly. Return only code for the
completed function, with no additional explanation, print statements, or unit
tests.\n{prompt}\n\n"

Table 4: Prompt formats for different settings. The {prompt} is provided by the evaluation set.
Note that for CAD, we decomposed {prompt} into {function_docstring} and {function_signature}. For RAG, we feed in the

top-1 retrieved text as {rag_doc}.
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