Guided Random Testing Paper Evaluation

Aditya Akhileshwaran, Rich Chen, Edward Qin*
{aakhiles,rc2002,edwardcq}@cs.washington.edu
University of Washington
Seattle, WA, USA

ABSTRACT

Guided Random Testing (GRT) [5] is a set of techniques that en-
hances traditional random testing methods for automated test gen-
eration. The GRT techniques accomplish this by incorporating
heuristics and feedback via a mix of static and dynamic analyses to
improve efficiency and effectiveness. Though original authors Lei
et al [5] found that their GRT ideas were effective, the underlying
implementation was not released publicly. In this paper, we evalu-
ate the strengths and limitations of GRT through a best attempt at
a replication study of the results from the original paper, with the
additional goal of releasing an open implementation of the tech-
niques. To that end, we implement a subset of the GRT techniques
on the pre-existing random testing generation tool Randoop [6].
Then, we conduct a replicated evaluation of the GRT techniques, fol-
lowing similar methods from the GRT paper. Our study includes a
detailed examination of the implementation strategies, performance
trade-offs, and case studies demonstrating its impact.

1 INTRODUCTION

Unit tests for object-oriented programming consist of a sequence
of method calls involving object construction and mutation, culmi-
nating in an assertion about the correctness of the results. Writing
unit tests can be tedious, time-consuming, and challenging, espe-
cially when aiming to obtain high levels of code coverage. This
often discourages developers from creating an extensive testing
suite, eventually increasing the risk of adding code with defects
into production code. Such defects usually arise due to oversight in
development or from not anticipating edge cases in the code.

Prior tools like Randoop [6] and EvoSuite [1] attempt to address
the issue of automatic unit test generation. Guided Random Test-
ing (GRT) [5] builds on Randoop and proposes a technique using
static and dynamic information on program types, data, and de-
pendencies in various stages of automated test generation. The
GRT paper reports better performance than Randoop and EvoSuite
in its evaluation, and also beat EvoSuite in the 2015 Search-Based
Software Testing (SBST) competition [2]. This is surprising given
EvoSuite’s consistent leading performance, scoring first place at
the SBST competition as recently as 2022 [7].

*All authors contributed equally to this research.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

CSE 503 Final Project, Winter 2025, Seattle, WA

© 2025 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-x-xxxx-Xxxx-X/YY/MM

https://doi.org/10.1145/nnnnnnn.nnnnnnn

Much value for the research community can be derived from a
systematic study of GRT. Unfortunately, the authors of the GRT
paper were reluctant to share their implementation and experi-
ments. As such, programmers are unable to use GRT-based tools in
practice. Our implementation and evaluation of these techniques
would be valuable to the research community, both with regards
to providing verification for and deeper understanding of the GRT
papers’ results, and also providing an accessible, open-source im-
plementation of GRT to end user programmers. Our study achieves
this through a replication of the GRT paper’s results: we provide
an implementation of techniques and uncover deeper relationships
between the techniques for defect detection, code coverage, and
smutation score metrics.

2 RELATED WORK

Current techniques for test generation include random unit test
generation like that of Randoop and GRT, and evolutionary search
like EvoSuite.

2.1 Randoop

To our knowledge, Randoop [6] was one of the first test generation
techniques to demonstrate the effectiveness of random test genera-
tion. Randoop centers around test generation for object-oriented
programming languages, incorporating feedback from executed
test inputs to better inform subsequent test inputs.

At its core, Randoop works with method sequences represent-
ing a sequence of assignment statements or method calls. Input
arguments to method calls include primitive values and reference
values. These values live in a pool of (or set of) possible input val-
ues, indexed on the type of the value. For example, there may be a
pool of int values, a pool of String values, and a pool of ClassA
values where ClassA is a reference type. For reference types, the
pool also remembers the sequence required to construct the object.

Sequences of method calls are then extended by choosing a ran-
dom method under test. Randomly chosen input sequences for
values v; for types T; where i € [k] are selected. The method call
m(T,...,Ty) is then appended at the end of the sequence. The
resulting sequence is then checked for redundancy, legality, errors,
and usefulness for new inputs. If the input has no violations of legal-
ity, a regression test can be constructed with asserts on object states.
Otherwise, an error-revealing test can be produced to indicate a
defect in the program. Usefulness of constructed objects for new
inputs is also determined by configurable filters, for which default
heuristics include adding inputs that do not have the same abstract
value in the pool, are not null, and do not produce exceptions.

Consider the snippet of an example program in Figure 1. The
program offers a ListNoisifier that creates a new list with added
Gaussian noise to the elements, and an ArrayListWrapper that wraps

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://randoop.github.io/randoop/
https://github.com/EvoSuite/evosuite

CSE 503 Final Project, Winter 2025, Seattle, WA

import java.util.ArrayList;
import java.util.List;
import java.util.Random;

class ListNoisifier {
static final int MAX_SIZE = 1024;
static final long DEFAULT_SEED = 42;

static List<Double> createList(List<Double> list, Random r) {
List<Double> result = new ArraylList<>(MAX_SIZE);
for (int i = 0; i < Math.min(list.size(), MAX_SIZE); i++) {
result.add(list.get(i) + r.nextGaussian());
}
return result;

}

static List<Double> createList(List<Double> list) {
return createList(list, new Random(DEFAULT_SEED));
}
}

class ArrayListWrapper {
static void ensureCapacity(ArrayList<?> list, int size) {
foo();
list.ensureCapacity(size);

}

Figure 1: Example methods that Randoop or GRT could generate
tests for

the ensureCapacity library function specific to ArrayList implementa-
tions. When running Randoop, method sequences consisting of List
construction and method calls may produce new List values. These
are added into the input pool under the corresponding type. In each
iteration, Randoop selects a random method to perform sequence ex-
tensions on. For example, if ListNoisifier.createlist(List<Double>) is
selected, then a corresponding List<Double> value and its method se-
quence is randomly selected from the input pool. The new sequence
returned is the result of the ListNoisifier.createlist(List<Double>)
called and appended as a new statement at the end of the sequence.
The resulting sequence can be added as a new input, and since there
are no errors, a unit test can also be generated based on asserts of
the object states.

This simple approach has been shown to be very effective at
fault detection, finding many previously-unknown errors. However
random test generation may suffer from the inability to capture
more complex logic.

2.2 Guided Random Testing

Guided Random Testing (GRT) [5] proposes six techniques to help
guide random test generation. The techniques use static analysis
and heuristics at run-time to better inform feedback-directed test
generation. In particular, it aims to improve defect detection, code
coverage, and mutation score metrics by utilizing information about
program types, data, and dependencies during the test generation
process. The authors evaluated GRT on 32 real-world projects and
reported that it outperformed major peer techniques in terms of
code coverage and mutation score. The approach involves extract-
ing knowledge from the system under test (SUT) through static
analysis and combining it with dynamic feedback, such as exact

Aditya Akhileshwaran, Rich Chen, Edward Qin

STATIC TECHNIQUES:

o Constant Mining: Add constants found in the source code
(at the class or global level) to the test input pool.

DYNAMIC TECHNIQUES:

e Dynamic Typing (Elephant Brain): Use run-time types
for generated values in the pool for more diverse inputs.

e Min-Cost-First (Orienteering): Favor method sequences
that cost less to execute.

e Min-Coverage-First (Bloodhound): Favor methods with
lower coverage criterion first.

HYBRID (STATIC + DYNAMIC) TECHNIQUES:

e Input Fuzzing (Impurity): Fuzz primitive values with
a Gaussian distribution and objects with calls to impure
(affecting state) methods at run-time.

e Input Construction (Detective): If the input type of a
tested method does not exist in the pool, then construct or
search for methods generating the input type.

Figure 2: Classification of GRT Techniques

type information and test coverage data, to guide the generation of
effective test cases.

We summarize and rename the main techniques in Figure 2. An
exact copy of the diagram showcasing the static analysis and run-
time effects of each GRT techniques from the original paper [5] is
also given in Figure 3.

Note that DYNAMIC techniques refer to heuristics done at test
generation run-time, rather than running the program to generate
tests for. Additionally, inputs refer to parameters to methods in
the method sequence for test generation. The input to Randoop or
GRT is the SUT, but the input to the sequences are primitive and
reference values generated from the test generation algorithm.

As described in Figure 3, GRT utilizes insights gathered from the
SUT to guide each step of the test generation. The process begins
with a lightweight static analysis to extract constant values from
the target classes. These values serve as “seeds” for constructing
complex object states throughout the testing process. Furthermore,
a static purity analysis classifies methods under test (MUTs) as
either pure or impure, enabling more efficient generation of novel
object states. A third static analysis examines dependencies between
method parameter types (test inputs) and return types (outputs) to
determine which object types are critical for testing MUTs. Since
precise types may only be identified during execution, GRT also
incorporates dynamic analysis to capture type dependencies at
run-time.

To showcase each of the 6 techniques presented in GRT, we can
re-examine the program snippet in Figure 1. Building on top of
Randoop, Constant Mining may statically mine the MAX_SIzE and
DEFAULT_SEED constants in the program and add them to the input
pool. Dynamic Typing will dynamically determine that sequences
involving calls to createList() will return an ArrayList and can thus
add entries in the pool of ArrayList values. Inputs from this pool
can then be passed into methods like ensureCapacity() that expect
ArrayLists. Min-Cost-First may increase the probability of select-
ing cheaper method sequences to construct like a single call to

Guided Random Testing Paper Evaluation

CSE 503 Final Project, Winter 2025, Seattle, WA

Static phase

Run-time phase

Method
pool

Constant Impurity Method Methgd Inpu‘t Sequenpe Method Resu!t
mining analysis adependgncy selection selectlon' > generayon > execution] evaluanonv
Detective Bloodhound [~ Elephant brain Detective |Elephant brain

A Orienteering — /| Detective
Detective |q.._ lﬁndaw obj. poﬂ | Orienteering
¥ T [Detecive M~ Bloodhound

Wy P
Uﬁa’f‘\ S — 20°e
U2y e Main object pool e\
. ain object poo L

n 2
9 Elephant brain o

Figure 3: Direct copy of GRT Paper’s Diagram of 6 techniques [5]

new ArrayList<() over longer sequences that involve multiple, re-
peated calls to ListNoisifier.createList(). Min-Coverage-First may
likewise target methods with less code coverage with higher proba-
bility. Input Fuzzing may apply Gaussian noise to primitive values
like the size parameter for ensureCapacity, and may apply impure
functions like add() or remove() to List variables passed in to any of
the three methods in the snippet. Finally, Input Construction may
first search for a constructor of an ArrayList or List if the iteration
of random test generation selects one of the three methods in the
snippet before having ever computed and added a method sequence
for type List.

2.3 EvoSuite

EvoSuite [1] uses evolutionary search to generate whole test suites
from scratch. The search is based around evolution: a population of
candidates are evolved via mutations and crossover. Reproduction
rates are higher for candidates with a higher fitness level. In the
context of test generation, EvoSuite represents whole test suites
as candidates and coverage criterions as fitness levels. Test suites
are composed of test cases created by sequences of method calls.
Mutations to test suites occur by adding or mutating test cases.
Mutations to test cases occur by adding or deleting statements
and parameters in source code. Crossover between two test suites
involves the exchange of randomly chosen test cases across each
test suite.

As mentioned in Section 1, EvoSuite has been a leading technique
in test generation. However, it can be computationally expensive
to run the search.

3 METHODOLOGY

We replicate a subset of the techniques proposed in the GRT pa-
per [5]. The techniques primarily augment test input quality and
method selection in Randoop.

There has been an ongoing process to integrate the techniques
as optional parameters in Randoop [6]. In fact, two techniques (Min-
Cost-First and Min-Coverage-First) have already been implemented
and merged into the Randoop, and at the time of implementation,
there were branches with changes for the remaining techniques.

Our approach was to first target and verify the unimplemented
phases. In particular, we implement and evaluate Dynamic Typing,
Min-Cost-First, Min-Coverage-First, and Input Construction.
We do not implement Input Fuzzing and Constant Mining tech-
niques due to scope and unclear interpretation of the original GRT

paper. However, for each technique, we provide insights on the
implementation and assumptions we make.

We then evaluate the GRT implementation to verify the results
as reported in the original paper. We focus on defect detection, code
coverage, and mutation score on subsets of the GRT techniques.
More of our evaluation methodology is detailed in Section 5.

4 IMPLEMENTATION

The implementation of GRT is built on the Randoop codebase. Each
technique can be enabled via configurable flags on the Randoop base
command. The changes described build on the existing Randoop
implementation [6] where there has been an ongoing process to
implement the techniques of the GRT paper. For each technique,
we describe assumptions made and if why we were not able to
implement if it is an excluded technique.

4.1 STATIC: Constant Mining

Constants can be mined from the source code at the global and local
levels. The weighting of which random input to then select during
run-time is weighted by inverse document frequency as described
in Section IIL.A for the original GRT paper [5].

One implementation we considered interpreted pcons: as the
probability of using any constant at the extracted level. From our
understanding of the GRT paper, this should instead refer only to
the probability that a local, class-level constant is used. However, it
is still difficult to tell from the wording in the original GRT paper
how input selection between constants from the global pool or
class-level pool at test generation run-time works. It is unclear
which pool should be selected from, and with what probability.
Additionally, it is unclear how the probability of selecting some
constant from the class-level pool can be represented as a single
static constant instead of a probability relative to the other constants
in the pool. Presumably, a change in the size of the pool should
affect the probability of selecting a constant.

Consequently, we felt that this change could not be verified
in the scope of this project, and may miscontrue the effect that
Constant mining has on test generation performance. We thus
EXCLUDE this technique from our evaluations. Future work will
require deliberation and investigation into the original intent of
the implementation.

CSE 503 Final Project, Winter 2025, Seattle, WA

4.2 DYNAMIC: Dynamic Typing

Run-time types can be determined at test generation run-time.
Method sequences can then be added to the input pool correspond-
ing to the run-time type, rather than the compile type. The method
sequence is augmented using type casts.

We believe that this technique is straightforward and correctly
implements the technique as intended by the original authors in
Section III.C of the original paper [5].

4.3 DYNAMIC: Min-Cost-First

Cheaper method sequences can be favored to generate more tests
given a constrained time budget. In particular, the execution cost
can be computed as a factor of execution time and the number of
method calls in the sequence.

The implementation considered closely adapts this weighting.
The function in Section IILE in the original paper [5] describes how
cost is inversely proportional to execution time and to the square
root of the number of method calls.

A couple key assumptions are made in the implementation. It is
assumed that sequence execution times do not change over runs
since the input does not change. As such, the summation of dif-
ferent execution times and method calls can be replaced with a
multiplication by the number of times teh input is selected by the
random test generation algorithm. To avoid divide by zero errors,
input sequences with zero execution time are assumed to take 1
nanosecond. These are reasonable assumptions made for ease of
implementation and performance.

4.4 DYNAMIC: Min-Coverage-First

Methods with lower branch coverage can be targeted with higher
probability during random test generation. This increases the prob-
ability of covering more branches, thus increasing the probability of
generating a test that finds a defect, given that a defect is randomly
present in some branches of the program.

The implementation closely adapts the weighting to select meth-
ods to test with higher probability based on the uncovered branch
ratio and the ratio of the number of times the method was used to
create a new regression test. The equation for the weighting is given
by the equation in Section IILF in the original paper [5]. The intu-
ition for the algorithm centers around a multi-armed bandit strat-
egy that favors methods with low code coverage and downgrades
weights logarithmically when a method is successfully tested.

A key assumption for the implementation is that the original
GRT paper’s reference to a "successfully invoked" method is one
that creates a new sequence kept in a regression test, whereas the
implementation interprets this as the number of times the methods
appears in any regression test.

4.5 HYBRID: Input Fuzzing

The representation of object states can be diversified by fuzzing
or modifying the input objects. This can be useful for reasoning
around edge cases.

The implementation adapts primitive value fuzzing as described
in Section IIL.B of the original paper [5], applying Gaussian noise to
numeric values and random Insert, Delete, and Replace operations
on String objects. At test generation time, inputs sequences are

Aditya Akhileshwaran, Rich Chen, Edward Qin

fuzzed. However, fuzzing on reference type objects is out of scope.
This requires a purity analysis to determine impure methods that
can modify object state. While the original GRT paper used an
existing purity analysis called ReIm and RelmlInfer [3], we were
unable to build the project. Other purity analysis methods exist,
but to our knowledge, there is no easily-adoptable implementation.
Consequently, we feel that only fuzzing primitive objects does
not demonstrate the full effect of Input Fuzzing. Thus, we EXCLUDE
this technique from our evaluations. Future work will require a
purity analysis implementation, which is an ongoing research direc-
tion in the field. This can then inform which methods may mutate
reference type objects, enabling input fuzzing on such objects.

4.6 HYBRID: Input Construction

A demand-driven approach to construct missing input objects at
test generation run-time can prevent the test generation loop from
failing to generate a method sequence. To augment this, a static
analysis on return types of MUTs can help build a recursive depen-
dency structure on type dependencies outside the SUT.

The implementation modifies the behavior when an input type
does not exist for a randomly selected method. For these types, a
recursive dependency search is done. For each type, constructors
and methods returning the object are identified, with input types
added to the queue. The constructors for such types are recursively
iterated over until successful sequences to construct the original
input types can be found. The intermediate types are also saved in
the input pool.

Notably, the GRT paper describes in Section IIL.D how input
types that were not originally defined by the user (like static library
objects) are maintained in a secondary object pool. For the scope
of this project, we work with the existing implementation to store
such inputs in the larger pool. The assumption is that this does not
affect correctness, but may potentially affect performance. An inves-
tigation into the performance improvement from using a secondary
pool (such that constructed inputs do not affect method sequence
lookup during test generation) is scoped for a future work.

5 EVALUATION

To evaluate our implementation of GRT, we use the same bench-
marks from the original GRT paper. As described in Section 4, we
study 4 of the original 6 techniques that we felt confident in the
implementation.

Our primary research questions are:

e Q1: How accurate are the defect detection, code coverage,
mutation score metrics as reported by the original GRT paper?

e Q2: How much does each technique contribute to an increase
in code coverage?

This project is scoped to verify the evaluation of the effectiveness
of 4 of the GRT techniques (Q1). Defect detection, code coverage,
and mutation score have been found to be closely correlated with a
test suite’s ability to find faults. However, the reader should note
that these metrics do not perfectly represent test quality, but we
use them for our evaluation since the GRT paper used these metrics
for their evaluation. In particular, the key metrics of test genera-
tion are as follows: the test suite should be 1) effective, capable of
detecting faults, 2) readable, with clarity and small test size, and 3)

Guided Random Testing Paper Evaluation

maintainable, with a co-evolution between code and tests. On the
other hand, the GRT paper[5] mostly only evaluates how effective
the generated tests are.

In conjunction with the measurement of GRT techniques on
test quality metrics, we compare how the techniques compare (Q2)
over these metrics with a series of ablation studies. In particular,
we compare how GRT (over all 4 techniques) compares with each
combination of GRT with one of the techniques removed. This
approach can help identify the effect of the removed technique on
the generator’s performance.

We aim to replicate or counter the general trends (and not exact
results) shown in the GRT evaluation. For the experiment setup, we
use the same hyperparameters as GRT: coverage guidance weight-
ing and time intervals p = 0.99, « = 0.9, and t = 50 seconds. For
the benchmarks, we measure the same Defects4] framework [4], as
well as a subset of the 32 real-world programs and their respective
versions.

As mentioned before, we review the general trends from the
GRT paper [5], and not exact results. Exact results are infeasible
to replicate because of differences in hardware and the impact of
random noise. The original GRT paper usesm a computer cluster
where each node runs Ubuntu 12.04 LTS with Linux kernel 3.5.0,
on a 16-core 1.4 GHz AMD 64-bit CPU with 48 GB of RAM. Our
hardware setup uses a 128-core 2 GHz AMD EPYC 7702P CPU with
512 GB of memory running Ubuntu 24.04.

5.1 GRT Defect Detection

We repeat the Defect Detection experiments from the original paper.
We use the same Defects4] framework [4] from the original GRT
paper[5], which enables controlled testing to determine how well
test generation tools can capture defects. The framework contains
a database that (at the time) consisted of 5 open source projects
with 357 faults. Each fault has an incorrect and correct version of
the program. The evaluation script runs the test generation tool on
the correct version of the program before running the tests on the
incorrect version, in which case the outcome is that the generated
tests failed to catch the defect, successfully detected the defect,
or failed even on the correct version of the program. We aim to
replicate a similar methodology from the GRT paper [5] showing
the number of defects caught by GRT, Randoop, and EvoSuite in
120, 300, and 600 second global time budgets. Unlike in the original
paper where each tool is run 10 times to generate 10 separate test
suites with the defects found aggregated as a union of the defects
found by each test suite, we instead run the tool a single time due
to compute constraints.

5.1.1 Defect Detection on 4 GRT Techniques. We perform an ab-
lation study over the techniques to evaluate the contribution of
individual techniques or components to the overall performance
of a model or system. By systematically removing or modifying
specific elements, we can observe the effect of each component on
the combined system’s performance. For instance, if a particular
technique is removed and there is a noticeable decrease in the sys-
tem’s performance, it indicates that the removed element plays a
significant role in achieving high rates of defect detection. Con-
versely, if removing a component has little to no effect, it suggests
that the component may not be as crucial.

CSE 503 Final Project, Winter 2025, Seattle, WA

Isolated Randoop GRT Combined EvoSuite
Program Defects 120s 300s 600s 120s 300s 600s 120s 300s 600s
JFreeChart 26 11 11 12 3 5 7 10 11 12
Apa. Math 106 17 21 23 11 13 17 35 35 39
Joda Time 27 1 1 4 1 1 1 7 9 9
Apa. Lang 65 9 9 10 2 6 6 22 23 26
Total 224 38 42 46 17 25 31 74 78 86

Figure 4: Defect Detection in Defects4j Benchmarks

Isolated No Dynamic Typing No Input Construction No Min-Cost-First No Min-Coverage-First

Program Defects 120s 300s 600s 120s 300s 600s 120s 300s 600s 120s 300s 600s

JFreeChart 26 4 5 5 10 10 13 4 6 6 6 6 6
Apa. Math 106 14 17 25 16 21 33 10 14 16 9 14 17
Joda Time 27 1 1 2 0 0 1 0 0 1 0 0 1
Apa. Lang 65 4 4 5 4 4 8 3 3 5 4 7 4

Total 224 23 27 37 30 35 55 17 23 28 19 27 28

Figure 5: Defect Detection in Defects4] Benchmarks with Ablations
Over Defects4]

Total Time Budget vs. Aggregated Detected Defects Across All Programs

m ‘ ‘I ||
0 IIII III II
120

300 600
Total Time Budget

Aggregated Detected Defects

N
S

Technique
evosuite m== randoopGRTMinusMinCostFirst
randoop randoopGRTMinusMinCoverageFirst
randoopGRT randoopGRTMinusInputConstruction
randoopGRTMinusDynamicTyping

Figure 6: Total defects detected over the four subject programs
(JFreeChart, Apache Commons Math, Joda-Time, and Apache Com-
mons Lang) with ablations over the four GRT techniques.

The results are given in Figures 4 and 5. Figure 4 shows the defect
detection performance between Randoop, EvoSuite, and Randoop
extended with all four GRT techniques (listed as GRT Combined).
Figure 5 shows the results of the ablation study where each of the
four techniques was disabled from the system (and thus Randoop
with GRT extensions was run with the remaining 3 techniques at a
time).

Figure 6 visualizes the combined results from Figures 4 and 5 by
plotting the total detected defects over all four subject programs
for each of the seven total generator configurations.

A surprising result is quickly revealed - extending Randoop with
the GRT techniques appears to hurt defect detection performance,
as demonstrated by the lower number of defects detected by Ran-
doop with GRT techniques as compared to base Randoop in Figure 4
and the corresponding visualization in Figure 6. Upon closer exami-
nation, this is because one of the techniques, Input Construction,
performs very poorly.

CSE 503 Final Project, Winter 2025, Seattle, WA

Input Construction has a strong negative correlation with defect
detection efficacy. The ablation that removes Input Construction in
Figure 5 shows that the total number of defects detected increases
at a 600 second global time budget while the other ablations and the
four combined techniques indicate fewer defects detected compared
to base Randoop. This relative performance across the ablations is
present over all three (120, 300, and 600 total second time budget
for test generation) of the time budgets.

Our hypothesis for this behavior lies in the expensive cost of
Input Construction. Of our four techniques, this is arguably the
most expensive, having both static and dynamic steps in a two-
stage process. Due to the limited time allotted to the generators to
produce tests, it is possible that the overhead and costs from this
technique do not justify any improvements in defect detection. This
idea of incurred overhead is supported by the general trend that
each of the four generators that include Input Construction (e.g.
all GRT techniques combined, removed Dynamic Typing ablation,
removed Min-Cost First ablation, and removed Min-Coverage First
ablation) slowly close the gap with base Randoop’s performance as
the time budget is increased.

An initial run shows that GRT without Input Construction can
generate 8155 method sequences from 9782 steps (iterations of
method sequence extension operation), while GRT with Input Con-
struction can generate 7429 method sequences from 9319 steps
generated on a 200 second global time budget on A4J. While these
results do not indicate an overwhelming distinction and is only run
on a small example, they hint at a possibility of evidence for the
hypothesis.

Regardless, further experimentation is needed to confirm or re-
fute this hypothesis. The first possibility is to run more experiments
on extended time budgets over the 600-second time budget, and
evaluate if Input Construction becomes useful at high time bud-
gets. Another possibility is that, compared to the computing cluster
mentioned in the original GRT paper[5] (of which we do not have
any details), the hardware used in these experiments is weaker or
under more load. Thus, running the experiments on a computer
cluster with nodes dedicated to running the test generation job may
be useful in verifying if Input Construction is more useful with
stronger compute capabilities.

5.1.2 Defect Detection on 3 GRT Techniques. The next evaluation
for defect detection was to remove Input Construction and consider
the three remaining techniques. With Input Construction disabled
for all of these experiments, we follow a similar methodology to
the prior experiment. Specifically, we ran another ablation study
was on the three remaining techniques, choosing one at a time to
remove and studying the remaining efficacy of the two others, as
well as comparing their results to running the system with all three
techniques combined. Finally, these results were compared to the
previously acquired results from EvoSuite and base Randoop.

The results of this evaluation are presented in Figure 7. Here,
GRT Combined refers to the combination of the three techniques of
Dynamic Typing, Min-Cost First, and Min-Coverage First. Then, the
three ablations are ablations on this combination, each removing
one of the three techniques and running Randoop extended by the
remaining two techniques. Figure 8 plots the total defects each of
the four systems detected across the four subject programs similarly

Aditya Akhileshwaran, Rich Chen, Edward Qin

Isolated GRT Combined ~ No Dynamic Typing No Min-Cost-First No Min-Coverage-First

Program Defects 120s 300s 600s 120s 300s 600s 120s 300s 600s 120s 300s 600s

JFreeChart 26 10 10 13 11 12 12 7 7 8 8 9 10
Apa. Math 106 16 21 34 2 5 7 4 4 5 3 5 6
Joda Time 27 1 1 1 1 1 2 0 1 1 0 1 2
Apa. Lang 65 4 4 8 2 5 7 4 4 5 3 5 6

Total 224 31 36 55 16 23 28 15 16 19 14 20 24

Figure 7: Defect Detection in Defects4] Benchmarks with Ablations
Over Defects4] (Without Input Construction)

to the previous evaluation. Figure 8 also reproduces the values of
EvoSuite, base Randoop, and the experiments prior to removing
Input Construction as points of comparison with the second set of
ablation experiments.

Total Time Budget vs. Aggregated Detected Defects Across All Programs

120 00

300 6
Total Time Budget

@
3

IS
]

Aggregated Detected Defects

N
S

0

Technique

= evosuite === randoopGRTMinusMinCostFirst-Before

== randoop m== randoopGRTMinusMinCostFirst-After
randoopGRT-Before

== randoopGRT-After

m=s randoopGRTMinusDynamicTyping-Before

== randoopGRTMinusDynamicTyping-After

randoopGRTMinusMinCoverageFirst-Before
randoopGRTMinusMinCoverageFirst-After
onstructi Beft

Figure 8: Total defects detected over the four subject programs
(JFreeChart, Apache Commons Math, Joda-Time, and Apache Com-
mons Lang) before and after removing Input Construction from the
ablation study. The Before suffix refers to experiments run before
removing Input Construction; the After suffix refers to experiments
run after removing Input Construction. Note that EvoSuite and base
Randoop do not have before and after - this is because disabling
Input Construction does not affect EvoSuite or base Randoop, and
so these values were included only as a reference.

As expected, after removing Input Construction, we found that
all of the generators that previously included Input Construction
have generally improved defect detection performance. Most im-
portantly, the GRT extended version of Randoop shows better per-
formance than base Randoop.

In the ablations after removing Input Construction, we observe
that Min-Cost First is the most significant technique for defect de-
tection performance improvement because the ablation test where
it is removed has the greatest impact on performance. Dynamic
Typing and Min-Coverage First are both less, but still significant
because the ablations missing these techniques show slightly better
performance over base Randoop.

At the lowest time budget of 120 seconds, we find that even
without Input Construction, the GRT techniques still perform worse
than base Randoop. However, this is no longer the case as the
time budget is increased. We posit that this is due to overhead

Guided Random Testing Paper Evaluation

in running the additional GRT techniques that make all of the
techniques ineffective compared to just running base Randoop
under constrained time budgets. The key takeaway is that the GRT
techniques are useful only if the user has sufficient computational
resources to run the additional analyses for each technique.

There are also some interesting trends that are difficult to isolate.
For instance, removing Dynamic Typing at lower time budgets (120
and 300 seconds) results in similar or equivalent performance to
the combined techniques, while the gap widens at the higher time
budget of 600 seconds. Additionally, removing Min-Coverage-First
at a time budget of 300 seconds has relatively low impact, but the
impact is higher at both 120 and 600 seconds. One possibility for
these trends is the varying degrees of interdependence between
the GRT techniques. As the original GRT paper mentions in a dia-
gram [5], almost all of the techniques have interactions with other
techniques. It may be that Dynamic Typing is a more expensive
technique that is not worth running on lower time budgets, hence
the lower performance of the remove Min-Coverage First ablation
(which contains Dynamic Typing) at a 120 second time budget. At
the same time, it’s possible that Min-Coverage First is also just
a fairly important technique, and so its removal would also hurt
performance at a 600 second time budget.

One major evaluation to be done in future work is to examine ev-
ery possible combination of the GRT techniques (beyond just doing
ablations). This would be useful in identifying the connections be-
tween particular combinations of techniques and identifying which
pairs, triplets, or other combinations of the techniques are most
important compared to the others. From the results we observe
here, it appears that the techniques are not easily analyzed inde-
pendently and in a vacuum - some of the techniques might only
be effective if combined with other techniques, while others might
be effective regardless. We were unable to perform experiments on
this due to computation limitations - the number of combinations
is exponential in the number of techniques, and so this would have
increased the computational costs exponentially.

5.1.3 Defect Discovery. One other evaluation from the original
paper was new defect detection on open source projects in the GRT
paper. We find that this is infeasible to replicate. This is because,
while Randoop and GRT can be used to generate error-revealing
tests, Randoop and thus GRT are deterministic in the default case,
using random seeds to achieve its random results. Therefore, we
cannot hope to find the exact version of the repository and attempt
to replicate detection of “new” bugs, especially when the random
seeds are not given. However, it may be useful to run the GRT
implementation for new defects on current open source programs.

5.2 GRT Coverage Scores

5.2.1 Setup. We also repeat the Instruction coverage and Branch
coverage distributions as per the regression tests by showcasing
the effectiveness of each of the GRT techniques, Randoop, and
EvoSuite. In terms of code coverage, we attempted to run each
subject program provided in the original GRT Paper([5] for 2 s/class,
10 s/class and 30 s/class in terms of seconds per class. In terms of
global time per subject program, we ran it for 0, 10, 50, 100 and 300
seconds over the whole program.

CSE 503 Final Project, Winter 2025, Seattle, WA

Software (version) NCLOC #Class # Insn. # Bran. # Mut.
A4J (1.0b) 3,602 45 9,773 544 936
Apache BCEL (5.2) 23,631 338 65,179 5,133 7,209
Apache C. Codec (1.9) 5,803 76 24,960 1,835 2,747
Apache C. Collection (4.0) 25,840 326 78,974 5,179 10,461
Apache C. Compress (1.8) 17,462 181 57,083 4,634 7,605
Apache C. Lang (3.0) 18,997 141 47,773 7,179 9,057
Apache C. Math (3.2) 81,792 845 288,250 18,576 41,023
Apache C. Primitive (1.0) 9,836 231 18,462 1,446 3,290
Apache Commons Cli (1.2) 1,978 20 3,588 490 512
Apache Shiro-core (1.2.3) 13,818 217 27,964 3,291 3,770
ASM (5.0.1) 24,193 176 65,146 7,475 9,765
ClassViewer (5.0.b) 1,485 23 5,266 470 609
Depasrcsys (10/2008) 204 6 652 88 103
Easymock (3.2) 4,372 79 9,449 915 1,382
Fixsuite (R48) 2,665 36 6,520 374 804
Guava (16.0.1) 66,566 1,546 136,261 11,247 20,709
Hamcrest-core (1.3) 1,253 40 2,199 155 314
Jcommander (1.36) 2,154 34 5,688 640 686
Java Simp. Arg. Parser (2.1) 4,888 69 8,623 714 969
Java View Control (1.1) 4,617 24 15,650 2,064 2,084
Javassist (3.19) 34,574 367 87,381 8,830 n.a.
Javax Mail (1.5.1) 28,271 284 79,599 9,523 11,070
Jaxen (1.1.6) 20,345 175 20,352 3,323 4,338
Jdom (1.0) 8,362 70 20,970 3,196 4,116
Joda Time (2.1 03/2014) 27,638 208 62,627 6,172 9,838
Nekomud (R16) 363 8 809 44 63
Pmd-ded (5.2.2) 1,608 20 2,902 305 384
SAT4]J Core (2.3.5) 17,397 213 41,840 3,815 6,140
Slf4j-api (1.7.12) 1,504 18 2,581 271 265
Tiny Sql (2.26) 7,672 31 20,850 2,237 2,755
Total 460,763 5,911 1,186,321 110,485 159,944

Figure 9: Direct copy of GRT Paper’s Software Metrics Table [5]

100 Instruction Coverage

bl Ll

Technique
mmm Baseline Randoop WM Randoop with GRT Minus DynamicTyping s Randoop with GRT Minus MinCostFirst
=== Randoop with GRT === Randoop with GRT Minus InputConstruction === Randoop with GRT Minus MinCoveragefirst

3

Instruction Coverage (%)
8

Figure 10: Instruction coverage for each component on 12 bench-
marks (300 s).

Unlike the actual experiments performed in the paper, we were
only able to reproduce 12 out of the 32 provided subject programs
in Figure 9. This is discussed later! .For each time budget, generator,
subject program configuration, the experiment was run once.

5.2.2 Metrics for Code Coverage. To give a better understanding
of the metrics described above, code coverage measures percentage
of program elements executed by tests. Specifically, instruction
coverage is the percentage of bytecode instructions executed, and
!We have been getting build error issues as well as JDK issues when attempting to

write scripts for the mutation score. As we clarify each issue, we will be able to run
coverage tests on all the benchmarks.

CSE 503 Final Project, Winter 2025, Seattle, WA

Branch Coverage

-snln.

Technique
= Baseline Randoop MMM Randoop with GRT Minus DynamicTyping s Randoop with GRT Minus MinCostFirst
Randoop with GRT ~ EEEI Randoop with GRT Minus InputConstruction B Randoop with GRT Minus MinCoverageFirst

100

80

Branch Coverage (%)
E]

N
s

Figure 11: Branch coverage for each component on 12 benchmarks
(300 s).

branch coverage is percentage of branches (if/else, loops) taken
across each class in the subject program. After running on each
generator, generated tests are compiled and executed against the
subject program. All the tests that are compilable are then eval-
uated by JaCoCo (Java Code Coverage tool) which tracks which
instructions and branches are executed. The coverage percentage
is then evaluted by using the formula (executed elements / total
elements) X 100%.

5.2.3 Coverage Analysis. From Figures 10 and 11, we observe sev-
eral important trends when removing individual components from
the GRT system in order to test each GRT techniques contribution
to the ablation test score. They illustrate the impact of each com-
ponent’s removal on instruction and branch coverage across the
benchmark suite.

Notably, in Figure 10, all GRT variants consistently match the
baseline Randoop implementation, which could contradict the orig-
inal paper’s central claim that GRT’s enhancements improve upon
traditional random testing. The differences between the various
GRT configurations, however, are less pronounced than might be
expected,

The most striking observation is the significant drop in coverage
found that removing the Input Construction component actually
resulted in slightly improved coverage metrics. Figure 10 shows
that we achieve higher instruction and branch coverage compared
to the complete GRT implementation. This strongly corroborates
our findings in Section 5.1.1, where Input Construction may be
counterintuitive. While demand-driven input construction aims to
prevent steps from failing due to missing input types, the cost to
constructing these inputs may outweigh the costs of skipping the
method sequence generation.

While the ablation results don’t highlight dramatic differences
between configurations, similar to as discussed in Section 5.1.2, the
techniques still seem to consistently demonstrate GRT’s improve-
ment over baseline random testing. This reinforces the value of the
techniques discussed in GRT, even if the contribution of individual
components is more subtle than previously understood.

Aditya Akhileshwaran, Rich Chen, Edward Qin

Branch Coverage Over Time (a4j-1.0b)
100

—8— randoopGRTMinusDynamicTyping
—H- randoopGRTMinusinputConstruction
—&- randoopGRTMinusMinCostFirst

-~k randoopGRTMinusMinCoverageFirst

80 4
—+— randoopGRT

60 1

40 A

Branch coverage (%)

204

T T
20 40 60 80 100
Time [s]

Figure 12: Branch coverage over time for the subject program a4j-
1.0b

100 Branch Coverage Over Time (dcParseArgs-10.2008)

—&— randoopGRTMinusDynamicTyping
—m- randoopGRTMinusinputConstruction
—#- randoopGRTMinusMinCostFirst

--& randoopGRTMinusMinCoverageFirst

801 —+— randoopGRT

60 1

40 A -

Branch coverage (%)
Ay
A

B
i
»
L 2

201

T
20 a0 60 80 100
Time [s]

Figure 13: Branch coverage over time for the subject program
dcParseArgs-10.2008

5.2.4 Individual Program analysis. We run GRT with each of its six
components disabled individually, and one where all are enabled
with 10s, 50s and 100s as the global time budget. We observe a
coverage improvement for each component and for full GRT as
time increases, but it seems to be dependent on other factors, too.

The three Figures 12, 13, and 14 present branch coverage over
time for different variants of Guided Random Testing (GRT) on three
subject programs: a4j-1.0b, dcParseArgs-10.2008 and easymock-3.2.

For a4j-1.0b, Figure 12 shows that all test generators show similar
patterns, starting with relatively low coverage (10-25%) and improv-
ing significantly, reaching approximately 60-65% at the 60-second
mark and 70-75% by 100 seconds. The full GRT implementation
(randoopGRT) on the four techniques begins with higher coverage
(around 25%) but is eventually matched or slightly surpassed by the
ablation variants randoopGRTMinusInputConstruction, which has

Guided Random Testing Paper Evaluation

Branch Coverage Over Time (easymock-3.2)
100

—8— randoopGRTMinusDynamicTyping
—B- randoopGRTMinusinputConstruction
—#- randoopGRTMinusMinCostFirst

--&+ randoopGRTMinusMinCoverageFirst
—— randoopGRT

80 4

60

40 |

Branch coverage (%)

20 4

T
20 40 60 80 100

Figure 14: Branch coverage over time for the subject program
easymock-3.2

marginally higher branch coverage at 100 seconds. All approaches
demonstrate diminishing returns as testing time increases.

For easymock-3.2, depicted in Figure 14, the results show similar
results to a4j-1.0b, with the only change being the differing values
with the best branch coverage score of almost 50% by the end.

In stark contrast, the dcParseArgs-10.2008 in Figure 13 results re-
veal that most approaches, including the full randoopGRT, achieve
only about 22-25% branch coverage throughout the entire testing
period with minimal improvement over time. Notably, the randoop-
GRTMinusInputConstruction variant significantly outperforms all
others for this program, reaching approximately 55-57% coverage.
This dramatic difference between these subject programs once again
highlights the negative effect of InputConstruction on branch cov-
erage.

In general, a few key ideas that could be reasoned about is the
number of classes each program have. a4j-1.0b and easymock-3.2
have much more classes than dcParseArgs-10.2008, which means
that dedicating more time in the subject program will show much
better coverage results as each generator genuinely has more time
to cover more branches in the program. Moreover, for smaller pro-
grams, Input construction can play a larger negative role by being
extremely expensive and hampering the coverage values.

The results align with our general findings so far that the In-
put Construction technique contributes negatively to the Coverage
metrics, despite the original paper claiming that the combination
of all techniques is generally stronger than its individual compo-
nents. Clearly, for each of the tested subject programs, removing
the Input Construction component actually improves performance,
suggesting this component might be counterproductive in certain
contexts.

6 LIMITATIONS AND THREATS TO VALIDITY

As referenced previously in Section 5, our study focuses on eval-
uating the effectiveness of GRT at test generation. While we are

CSE 503 Final Project, Winter 2025, Seattle, WA

specifically testing for three useful metrics—code coverage, mu-
tation score, and defect detection—we acknowledge that these do
not fully capture test quality. However, we primarily rely on these
metrics due to the replication nature of our study, as we aim to
validate the claims made in the GRT paper, which also uses these
metrics in its evaluation. Additionally, because we do not have the
original implementation, we must make assumptions about the
original implementation from the wording in the GRT paper. As
such, our replication risks incorrect implementation.

To determine causality, we replicate the GRT paper’s methodol-
ogy by running each experiment 10 times. However, we note that
the variations between random seeds can introduce unexplained
variance, and that arbitrary time constraints may not necessarily
fully represent the full test quality. For example, for a specific seed,
while GRT may generate more tests in less time, running Randoop
to completion could result in higher code coverage, mutation scores,
or defect detection.

In terms of generalization, the original GRT paper evaluates
numerous real-world open source programs, including Defects4],
which contain real defects. However, test quality is not solely de-
termined by metrics like coverage and defect detection. Factors
like readability and maintainability could also influence the test
generation that Randoop and GRT adopt.

Additionally, our experiments are conducted on different hard-
ware than in the original study, and we do not account for the impact
of hardware on the runtime or effectiveness of test generation.

7 CONCLUSION

Our replication study of the Guided Random Testing (GRT) pa-
per revealed several important insights that contribute to the test-
ing research community. We learned that while GRT techniques
can enhance test generation effectiveness, their benefits are not
as universal as originally claimed. The performance of individual
techniques varies significantly across different programs and time
budgets, with some techniques like Input Construction potentially
degrading performance in certain contexts.

Based on our observations, we recommend that the research
community:

(1) Prioritize releasing implementations alongside research papers
to enable proper validation and extension of techniques

(2) Approach composite techniques like GRT with more nuance,
recognizing that not all components will benefit all programs
equally

(3) Consider the computational overhead of advanced testing
techniques when evaluating their practical utility

(4) Conduct every possible combination, such as all 32 subject
programs, when performing ablation studies to to better un-
derstand the contribution of each technique

(5) Report detailed experimental configurations to ensure repro-
ducibility of results

Without our observations, researchers might continue to assume
that combining multiple testing techniques always yields better
results, potentially wasting computational resources on ineffective
techniques. Our work demonstrates the value of critical replication
studies and highlights the importance of carefully analyzing the

CSE 503 Final Project, Winter 2025, Seattle, WA

trade-offs between technique complexity and performance gains in
automated test generation.

REFERENCES

[1] Gordon Fraser and Andrea Arcuri. 2011. EvoSuite: automatic test suite generation
for object-oriented software. In Proceedings of the 19th ACM SIGSOFT Symposium
and the 13th European Conference on Foundations of Software Engineering (Szeged,
Hungary) (ESEC/FSE ’11). Association for Computing Machinery, New York, NY,
USA, 416-419. https://doi.org/10.1145/2025113.2025179

Gordon Fraser and Andrea Arcuri. 2015. EvoSuite at the SBST 2015 Tool Competi-
tion. In 8th International Workshop on Search-Based Software Testing (SBST’15) at
ICSE’15. To appear.

Wei Huang, Ana Milanova, Werner Dietl, and Michael D. Ernst. 2012. Relm &
RelmInfer: Checking and inference of reference immutability and method purity. In
OOPSLA 2012, Object-Oriented Programming Systems, Languages, and Applications.
Tucson, AZ, USA, 879-896.

René Just, Darioush Jalali, and Michael D. Ernst. 2014. Defects4]: a database of
existing faults to enable controlled testing studies for Java programs. In Proceedings
of the 2014 International Symposium on Software Testing and Analysis (San Jose,
CA, USA) (ISSTA 2014). Association for Computing Machinery, New York, NY,
USA, 437-440. https://doi.org/10.1145/2610384.2628055

o,

(3

[4

Aditya Akhileshwaran, Rich Chen, Edward Qin

[5] Lei Ma, Cyrille Artho, Cheng Zhang, Hiroyuki Sato, Johannes Gmeiner, and Rudolf

Ramler. 2015. GRT: Program-Analysis-Guided Random Testing (T). In 2015 30th
IEEE/ACM International Conference on Automated Software Engineering (ASE).
212-223. https://doi.org/10.1109/ASE.2015.49

Carlos Pacheco, Shuvendu K. Lahiri, Michael D. Ernst, and Thomas Ball. 2007.
Feedback-Directed Random Test Generation. In 29th International Conference on
Software Engineering (ICSE’07). 75-84. https://doi.org/10.1109/ICSE.2007.37
Sebastian Schweikl, Gordon Fraser, and Andrea Arcuri. 2022. EvoSuite at the SBST
2022 Tool Competition. In 2022 IEEE/ACM 15th International Workshop on Search-
Based Software Testing (SBST). 33-34. https://doi.org/10.1145/3526072.3527526

APPENDIX A: CODEBASES
(1) Our fork of Randoop lives on Github at https://github.com/

edward-qin/randoop-grt.

(2) Our fork of Defects4;j lives on Github at https://github.com/

edward-qin/defects4j-grt.

(3) We are using an existing (private) repository for coverage

and mutation score at https://github.com/randoop/grt-testing/
tree/aditya-scripts-branch

https://doi.org/10.1145/2025113.2025179
https://doi.org/10.1145/2610384.2628055
https://doi.org/10.1109/ASE.2015.49
https://doi.org/10.1109/ICSE.2007.37
https://doi.org/10.1145/3526072.3527526
https://github.com/edward-qin/randoop-grt
https://github.com/edward-qin/randoop-grt
https://github.com/edward-qin/defects4j-grt
https://github.com/edward-qin/defects4j-grt
https://github.com/randoop/grt-testing/tree/aditya-scripts-branch
https://github.com/randoop/grt-testing/tree/aditya-scripts-branch

	Abstract
	1 Introduction
	2 Related Work
	2.1 Randoop
	2.2 Guided Random Testing
	2.3 EvoSuite

	3 Methodology
	4 Implementation
	4.1 STATIC: Constant Mining
	4.2 DYNAMIC: Dynamic Typing
	4.3 DYNAMIC: Min-Cost-First
	4.4 DYNAMIC: Min-Coverage-First
	4.5 HYBRID: Input Fuzzing
	4.6 HYBRID: Input Construction

	5 Evaluation
	5.1 GRT Defect Detection
	5.2 GRT Coverage Scores

	6 Limitations and Threats to Validity
	7 Conclusion
	References

