21
22
23
24
25
26
27
28
29

39
40
41
42
43
44

46
47
48

49

FPyDebug: Numerical Accuracy Profiling

Brett Saiki
bsaiki@cs.washington.edu
University of Washington
Seattle, Washington, USA

Abstract

Floating-point rounding errors easily lead to unacceptable devia-
tions from the intended real number computation, yet they remain
difficult to debug. Current numerical accuracy debugging tools
suffer from two distinct problems: they are external from the lan-
guage ecosystem—users must cycle between the implementation
environment and the debugging environment—and they rely on
approximate methods—errors may not be caught or valid code is
falsely reported. Both of these issues discourage user of these tools
and decrease their reliability. Instead, we propose such debugging
should be lightweight—available within the environment itself—and
accurate—using exact oracles when possible.

We implemented our ideas in FPyDebug, a numerical accuracy
profiler that can detect if a function suffers from numerical error,
and if so, ranks the function’s expressions by the likelihood they
contribute to the observable error. To measure accuracy correctly,
FPyDebug provides real number computation, extending prior work
to work with statements and complex control flow. To be conve-
nient, FPyDebug is available as a library in Python for Python code.
We demonstrate FPyDebug on 134 benchmarks from across a wide
variety of domains. FPyDebug allows users to easily and accurately
identity numerical errors within their program. Moreover, its real
number evaluation strategy is more accurate than approximate
methods, incurring a 2.9x performance overhead.

1 Introduction

Detecting and debugging floating-point rounding errors remains
a difficult task. These errors may be subtle or silent, yet cause
computations to unacceptably deviate from the intended real num-
ber behavior. Worse, programming environments are increasingly
heterogeneous: new accelerators offer a large selection of num-
ber formats, each with different precision and memory bandwidth
trade-offs, and new instructions offering numerical capabilities be-
yond simple arithmetic, often with unusual rounding behaviors.
Developers must leverage these features and navigate complex
trade-offs to maximize the performance of their programs without
compromising numerical accuracy, while inevitably encountering
bugs including numerical errors.

The current landscape of numerical accuracy debugging tools is
insufficient. These tools are often external: users must load their
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binary into a debugging tool, diagnose problems within the tool’s
environment, and manually interpret the output to repair their code.
For example, prior work [2, 22] use the Valgrind framework [16]
while others [4, 5] utilize compiler instrumentation like AddressSan-
itizer [23]. Additionally, they rely on approximate methods. Their
oracles use arbitrary-precision floating-point [2, 22] to increase the
precision of intermediate computations, or error-free transforma-
tions [5], to preserve accuracy with additional error terms; neither
technique guarantees the result is sufficiently close to the ideal
computation. Thus, these tools suffer from long debugging loops,
discouraging programmers from using them, or inaccurate results,
producing time-consuming false positives, or worse, not detecting
problems at all. Without easily usable numerical accuracy debug-
gers, programmers may often perturb code haphazardly or resort to
unnecessarily large precision to fix or simply mask poor numerical
behavior, incurring both accuracy and performance costs.

To address these issues, we introduce FPyDebug, a numerical ac-
curacy profiler that is lightweight and accurate. FPyDebug provides
two modes: (i) a function accuracy profiler that detects if a function
suffers from numerical errors, and (ii) an expression accuracy profiler
that ranks expressions based on the error they introduce even when
their free variables have no accumulated error, i.e., a local measure
of numerical error. These two profilers take the perspectives of the
caller and callee, respectively: how a function may affect accuracy
when its result is used in future computations, and what accuracy
issues within a function may impact the accuracy of the return
values. Both of these profilers leverage a real number evaluator
based on the Rival interval library [11], to compute the correctly-
rounded real number value to measure the actual deviation of the
floating-point computation at any point in a program. Moreover,
we implement FPyDebug as a Python library to debug Python code
directly; thus, providing a convenient debugger that may interact
with the broader Python ecosystem.

We demonstrate FPyDebug on a set of 134 numerical bench-
marks from the FPBench suite [7]. We show that FPyDebug allows
a user to easily and accurately identify numerical errors within
their programs. Moreover, FPyDebug’s profilers are more accu-
rate than approximate methods like high-precision floating-point
computation seen in prior work. We then illustrate that real num-
ber evaluation is only 2.9X slower than approximate methods and
produces a numerical result 90% of the time.

This paper contributes the following:

e Two accuracy profilers to evaluate which functions have
numerical error and which expressions likely contribute to
the overall error (Section 3).

o Areal number evaluator that computes the correctly-rounded
real number result of programs with statements and com-
plex control flow (Section 4).
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e An implementation in Python to analyze numerical pro-
grams in an embedded DSL (Section 5).

Section 2 provides necessary background on floating-point num-
bers, rounding error, and arbitrary-precision interval arithmetic.
Section 6 evaluates FPyDebug on programs with numerical errors.
Section 7 discusses FPyDebug’s limitations and suggests future
work to address them. Section 8 covers related work, and Section 9
concludes.

2 Background

We provide necessary background for understanding FPyDebug.
First, we describe floating-point numbers (Section 2.1) and numeri-
cal error (Section 2.2). Then, we cover arbitrary-precision interval
arithmetic, a technique for real number computation (Section 2.3).

2.1 Floating-Point Numbers

Floating-point numbers (F) are the subset of real numbers (R) rep-
resentable in scientific notation:

(=1)% x ¢ x 2°*P,

where s € {0,1}, ¢ is an integer with precision p, i.e., ¢ is rep-
resentable in p digits, and exp is any integer. Most literature on
floating-point numbers represents these numbers in“normalized”
form,
(-1)°* x 1.m x 2°,

where m is a digit sequence of length p—1,and e = exp—p+1, so that
¢ scales appropriately to 1.m € [1,2). ! The IEEE 754 standard [1]
describes a common representation of floating-point number that
may be encoded in a fixed number of bits. To do so, each IEEE
754 floating-point format has a range of valid exponent values
[expmin, €Xpmax] and a maximum precision pmay that restricts the
set of representable values in the format. The IEEE 754 standard
reserves a small subset of non-real values in each format, namely
+00, and not-a-number error values.

Each floating-point operation must produce a floating-point re-
sult based on the ideal real number result. Formally, each floating-
point operation f : R" — F defines rnd : R — F, the rounding
mode of f , a function that maps each ideal real number result x to
a floating-point number rnd(x). Then, the floating-point operation
is exactly:

f(x) =rnd(f(x))
where f : R" — R is the ideal mathematical operation.
The most common rounding mode is “round to nearest, ties to
even” (RTE) which uses the following rules:
e if x € F, then rnd(x) = x,
e if x ¢ Fand X € F is uniquely the closest floating-point
value to x, then rnd(x) = x;
o otherwise, there exist x1, x € F that are equidistant to x,
and rnd(x) is whichever value has an even mantissa m.

For fixed-size formats, if x is larger in magnitude than the largest
representable in the format +Xmayx, then f produces either +co or
+Xmax (With the sign of x), depending on the rounding mode. This
condition is called overflow. The opposite condition, when x is too

!Floating-point standards like the IEEE 754 standard also support subnormal numbers
where the significand 1.m is instead represented by 0.m.
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small in magnitude is called underflow; however, it requires no
special treatment in our presentation of floating-point numbers.
Reversing the rounding operation, we obtain

rnd 1(%) = {x e R | rnd(x) = %},

the interval of real values that will round to %. We say that rnd~! (%)
is the rounding envelope of . Under the RTE rounding mode, we
compute the rounding envelope of a floating-point number x in
the following way. Identify x1, x2 € F, the nearest floating-point
numbers below and above % (x; < £ < x3). Then rnd~!(x) =
[x7, xp] where x; = (x1+%)/2 and x, = (x2+X)/2 are the midpoints
between x; (or x2) and %.

2.2 Rounding Error

Rounding error is the numerical difference between the floating-
point result and the ideal real number result of a function (or pro-
gram). For an individual operation, the relative error € comes from
the rounding operation: £ = rnd(x) = x + x¢. Rounding error intro-
duced by an individual operation come in two flavors: insufficient
precision or overflow (underflow). If x requires more than p digits
(or possibly an infinite number of digits), rnd(x) introduces an error
of up to 277 times smaller than . If x is too large, then % is either
+Xmax OF +00 which introduces potentially an unbounded amount
of numerical error. Similarly, if x is too small, * = 0 and the relative
error is 1.

In practice, only basic arithmetic guarantees a relative error of
27P, also called the machine epsilon, assuming no overflow or under-
flow. Transcendental operations like exponentiation and trigono-
metric functions from common math libraries (like math.h in the
C language), may introduce far more error. Typically, it is a small
integer multiple more than the machine epsilon.

Rounding errors also accumulate as the intermediate floating-
point values drift from the ideal real number value. In addition to
introducing rounding error, operations may amplify errors in their
arguments. Consider (x + 1) — x. Ideally, this expression would
always compute 1. However, for large floating-point values, say
x ~ 10'%, x + 1 rounds to x, so (x + 1) — x = 0. While the initial
rounding error of x + 1 is relatively small (machine epsilon), the
accumulated error causes a complete loss in accuracy, often called
catastrophic cancellation.

2.3 Arbitrary-Precision Interval Arithmetic

When computing an accurate estimate of the real number result is
crucial, standard floating-point computation is often insufficient as
it introduces potentially unbounded relative error. Prior work [2, 4,
22] rely on arbitrary-precision floating-point computation, where
the precision p may be increased to tens of thousands of digits, to
approximate the real number result with higher confidence. While
this technique may overcome problems with rounding error in
many cases, any computed value may still suffer from unbounded
relative error and its distance to the ideal real number value is
unknown.

Rather than using floating-point numbers, interval arithmetic
represents the result of each computation as an interval [lo, hi] and
ensures that the result of every floating-point operation f contains
the true real number result. The invariant of sound intervals is
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crucial: the composition of multiple operations still produces an
interval containing the ideal result. In practice, errors accumulate
and the interval becomes impractically wide. However, by com-
bining interval arithmetic with arbitrary-precision floating-point
computation, we can recompute at increasingly higher precision
until the interval becomes sufficiently small or the intermediate pre-
cision becomes too large and the computation fails. Prior work [11]
explores how to quickly recognize when increasing precision will
not cause the interval to converge.

For the purposes of this paper, we will define sufficiently small to
be the condition when there exists a (unique) floating-point number
x such that rnd(lo) = x and rnd(hi) = x under the RNE rounding
mode. We say that x is the correctly-rounded result; or that x is
accurate to p digits of precision. This condition is equivalent to the
interval being contained within the rounding envelope of x, i.e.,
[lo, hi] C rnd~1(x).

3 Accuracy Profilers

FPyDebug provides two accuracy profilers: a function profiler which
determines if a function’s floating-point result differs from the real
number result; and an expression profiler which identifies which
expressions may be causing such errors. Both profilers compare
how floating-point execution numerically deviates from the ideal
computation, just at different granularity: entire function or individ-
ual expressions, respectively. These profilers rely on a real number
evaluator (Section 4), which computes the closest floating-point
number to the real number result at a specified precision.

3.1 Function Accuracy Profiler

The function profiler identifies when functions have observable
numerical error, when its output deviates from the real number
result. The distinction of observability is important since rounding
error can accumulate within the function but have little effect on
the return value. For example, the naive expression

Cr(x+1)—x

has the familiar subexpression (x + 1) — x from Section 2.2. The
subexpression should ideally be 1, but the floating-point result
becomes 0 for large x. However, when (x + 1) — x becomes 0, x? is
much larger than 1, so adding 1 has no effect since it is rounded off.
Therefore, the function has minimal observable rounding error. If
the profiler detects large numerical error for many inputs, than we
should interpret the result at any call site of the function to be y + ¢
where y is the ideal result and ¢ is a noticeably large error. In this
case, the developer may wish to probe further with the expression
profiler (Section 3.2), invoke a repair tool like Herbie [18, 20, 21],
or rewrite their code themselves.

Figure 1 shows the algorithm for the function profiler. Given a
function f of floating-point (and boolean) operations, the function
profiler evaluates j; = f(xi) on a set of input points xy, ..., X, using
the usual IEEE 754 floating-point semantics and compares the result
to the real number value of y; = f(x;), rounded to pmax digits, the
maximum number of digits allowed by the type of 7j;. This precision
requirement is important since it ensures that the real evaluator
produces the closest value to the real number result that is the same
type as the floating-point result, i.e., a implementation with no
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def function_profile(f, xs):
errs = []

1

2

3 float_eval = NativeEvaluator()
4 real_eval = RealEvaluator()

5

for x in xs:
6 y_float = float_eval.run(f, x)
7 y_real = real_eval.run(f, x, prec(y_float))
8 err = error(y_fl, y_real)
9 errs.append(errs)
10 return summarize(errs)

Figure 1: Function profiler. Runs a function f on a set of input
points xs, computing the difference between the floating-
point result y_float and real-number result for each y_real
input value. Reports the aggregate error, either by averaging
or selecting the worst-case error.

observable error with the same type signature would produce this
value. The values y; and 7; may differ due to accumulated numerical
error. The profiler aggregates these errors for a set of input points,
producing either the average of errors or the maximum error.

FPyDebug allows the user to specify which error function used
to measure the error between the floating-point and real number
result. As long as the error function correctly ranks errors by their
severity, FPyDebug’s results are reasonable. We present a few com-
mon error metrics. The absolute error |y — 7| simply measures the
positive difference between the two values while the relative error
[(y—1)/y| (discussed in Section 2.1) measures the positive difference
scaled such that the magnitude of y has no effect. Herbie [18, 20, 21]
uses ordinal error which approximately measures the number of
floating-point values between y and 7, transformed by log, (x + 1).
The intuition for this metric is it estimates the number of “bet-
ter” floating-point values the function could have returned with
orderr(y,9) =0iffy = 7.

3.2 Expression Accuracy Profiler

While the function accuracy profiler measures the observable nu-
merical error of a function for a set of input points; the expression
accuracy profiler identifies internal numerical error. This finer-
grained profiling can identify when the floating-point computation
of an expression deviates from the real number result, even when
the value of each free variable is correctly rounded. This technique
adapts the local error heuristic introduced in Herbie [18] which
measures the floating-point error introduced by individual oper-
ations. The local error heuristic is finer-grained than expression
profiling, but likely suffers from scaling issues; FPyDebug operates
on programs rather than small expressions, so expression profiling
is better suited.

Figure 2 shows the algorithm for the function profiler. Like the
function profiler, the algorithm uses both the floating-point and real
number evaluator. For each input point x the real evaluator runs the
function on x, recording for each expression e, the computed value
y_real and the environment, the mapping from variables to values,
captured immediately before executing the expression. After the
real evaluator executes, we evaluate each recorded expression e
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def expr_profile(f, xs):

1

2 errs_by_expr = {}

3 float_eval = NativeEvaluator()

4 real_eval = RealEvaluator()

5 for x in xs:

6 for expr, y_real, env in real_eval.run_with_trace(f, x) :

7 y_float = float_eval.run(expr, env)

8 err = error(y_float, y_real)

9 errs_by_expr[expr].append(err)
10 return { expr: summarize(errs) for expr, errs in errs_by_expr }

Figure 2: Expression profiler. Runs a function f on a set of
input points xs, identifying expressions where the floating-
point and real-number result deviate. Reports the aggregate
error, either by averaging or selecting the worst-case error.

using the floating-point evaluator and the environment of correctly-
rounded values to produce y_f'loat. The profiler measures the error
between the real number and floating-point result and records it.
Finally, the errors are aggregated for expression as with the function
profiling, computing the average error or finding the maximum
error for each expression.

Using the environment from the real evaluator at each program
point rather than from the floating-point evaluator is an impor-
tant choice. It ensures that the values passed to the floating-point
evaluator have minimal error; they are correctly rounded. Thus
any numerical error measured after executing the expression must
be solely from the expression itself. This observation agrees with
the principle underlying the local error heuristic introduced by
Panchekha et al. [18], which considers error coming solely from
an operation. It should be noted, however, that since the interme-
diate values come from the real number evaluator, the computed
floating-point values may differ those that would be computed
during normal execution. This observation identifies another key
difference between the function and expression profiler: if the ex-
pression profiler identifies an expression of interest, it may be the
case that the expression neither introduces any real error during
normal floating-point evaluation (since the values might be already
perturbed) nor contributes to any observable rounding error out-
side of the function (recall the example in Section 3.1). Rather, the
measured error is an estimate of how likely the expression is con-
tributing to the overall observable rounding error.

4 Real Number Evaluator

Both accuracy profilers, the function profiler (Section 3.1) and the
expression profiler (Section 3.2), require comparing the result of
floating-point computations against a real number oracle. One such
technique for real number oracles is arbitrary-precision floating-
point arithmetic as implemented in FPDebug [2], PositDebug [4],
and Herbgrind[22] (see Section 2.3). Another technique is arbitary-
precision interval arithmetic which actually attempts to compute the
real number computation, failing only when the required internal
precision exceeds a set limit. FPyDebug uses arbitrary-precision
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interval arithmetic for its accuracy, at the expense of possible fail-
ures, since it guarantees that its result is the closest floating-point
value to the real result.

An oracle using arbitrary-precision floating point computes with
floating-point arithmetic using some sufficiently large precision
k > p, where p is the desired precision of the output, in hopes
that the high precision result is accurate up to p’ digits where
p’ = p. However, arbitrary-precision floating-point arithmetic still
suffers from numerical error, so the condition p” > p is not guar-
anteed. For even simple expressions, the required precision may
be large; Vx + 1 — v/x at x = 103 requires over 1000 binary digits
of precision to ensure the result is accurate to at least the same
precision as double-precision floating-point values. On the other
hand, an oracle using arbitrary-precision interval arithmetic like in
Rival [11] produces an interval containing the real result; the condi-
tion p’ > p is equivalent to the endpoints of the interval rounding
to the same value at precision p (see Section 2.3). FPyDebug extends
Rival, which only evaluates expressions, to work on larger programs
with statements and complex control flow.

FPyDebug’s real number evaluator computes on functions with
boolean and floating-point operations with assignment statements,
conditional statements, while loops, and return statements. For
a function f with formal arguments x1, .. ., xp, the real evaluator
requires input floating-point values vy, . . ., v, for each argument,
and an output precision poyt. The evaluator produces a result that is
the ideal real number up to poyt digits. Importantly, all intermediate
values are either intervals containing the real number result, a
guarantee from Rival’s sound interval invariant, or a boolean value.
We will denote by v = rival(e, p) an evaluation by Rival of an
expression e such that v is correctly rounded to at least p digits of
precision. This call does not guarantee a result; if the expression
requires excessively high precision for an intermediate operation,
then Rival fails and an exception is thrown.

To understand how FPyDebug extends Rival, we will first con-
sider the case where the only statements are assignment statements
x_1 = e_i and return statements return e_r. Each e; represents
some expression of floating-point or boolean operations, literals,
and variables To simplify our analysis, the return statement must
appear as the last statement of the function. The key challenge is for
any expression e; and precision p;, the evaluation v; = rival(e, p)
may fail because the interval of some previous computation may be
too wide; and thus, the current computation requires more precision,
beyond the limit, to make up for the uncertainty. A naive solution is
to simply use a uniformly high precision p > poyt throughout the
computation; however, this leads to slow performance especially
when high precision is unnecessary.

We can reframe this challenge as a precision allocation prob-
lem: finding the minimum required intermediate precision p; of x;
such that the final expression e, may be computed to pout digits
of precision. This problem is difficult: the required precision p; at
each statement is dependent on both the precision of previously
computed local variables x; (j < i) and the accuracy of any future
computation.

FPyDebug’s real number evaluator uses a simple precision assign-
ment algorithm. First, it allocates exactly pout digits of precision to
the expressions at each assignment statement. In the best case, this
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1 defreal_eval(f, x, p):

2 # initialize precision allocation
3 prec_map = {}

4 for expr in f.exprs():

5 if expr.has_type_real():

6 prec_map([expr] = p

# evaluation loop

8 while TRUE:

9 try:
10 return internal_eval(f, x, prec_map)
11 except PrecisionError as e:
12 for expr in f.exprs():
13 if expr.is_before(e.expr):
14 prec_map[expr] += 2
15 if prec_map[expr] > MAX_PRECISION:
16 raise PrecisionLimitExceeded()

Figure 3: Real evaluation. Evaluate a function f on input
x at precision p. After allocating precision, the evaluator
iteratively tries computing with the current precision as-
signments (internal_eval). When Rival fails, precision as-
signments for previous expressions are doubled. Boolean
expressions are not assigned precisions.

is sufficient and each evaluation rival(e;, p;) succeeds. In many
cases, some intermediate computation, say at ej, fails due to exces-
sive intermediate precision. Using the hypothesis that the failure
was due to a local variable x;. (k < j) having too little precision,
the evaluator doubles the allocated precision at each statement
preceding x_j = e_j and restarts computation from the first state-
ment. This loop continues until either the evaluator produces a
result without encountering a precision exception, or the evaluator
allocates precision beyond the limit set by Rival. In this case, the
evaluator has no recourse; it too raises a precision exception that
the user must handle.

Extending this technique to conditional statements and loops
is mostly straightforward. Conditional statements and loops both
have a single expression evaluating to a boolean value to indi-
cate which statement to execute next. Since the return type is a
boolean, precision need not be assigned—this is only relevant to
real numbers. For both of these syntactic constructs, the precision
for statements within each branch (or loop body) are reallocated
based on program order. For example, if Rival fails for a statement
within an if-true branch of an if statement, the precision is increased
for previous statements in the branch, but precision in the if-false
branch is untouched. When a failure occurs beyond a join point in
the program, e.g., the point after an if statement, precision must be
increased along both branches. Figure 3 summarizes our description
of FPyDebug’s real number evaluator.

5 Implementation

FPyDebug is a dynamic analysis tool for numerical programs in
Python, providing both accuracy profiling and real number eval-
uation. We implemented FPyDebug as a plugin within the FPy
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framework 2 (Section 5.1). FPyDebug comprises of 1178 lines of
Python code. FPyDebug requires the Rival library for its real num-
ber evaluator; its implementation ensures sound interchange of
intervals (Section 5.2) and optimizations to avoid unnecessary loss
of precision (Section 5.3).

To use FPyDebug, a programmer writes a numerical program
in Python and adds the @fpy decorator to load it into the FPy
environment. Then, possibly in the same module, the programmer
constructs either of FPyDebug’s profilers, FunctionProfiler or
ExpressionProfiler, and runs the profiler on a list of input points.
Each profiler returns a summary, either the function’s observable
error or a ranking of expressions by how much error they might
introduce.

5.1 The FPy Language

FPy is an embedded domain specific language (DSL) within Python
intended for specifying and simulating numerical programs for a
wide variety of number formats. Programs in FPy are a subset of
Python. The only valid datatypes are booleans, real values, and
tuples. Expressions include the boolean operations, arithmetic op-
erations, the standard set of trascendental operations seen in most
math libraries, and basic tuple operations like construction, index-
ing, etc. FPy programs have assignment statements, conditional
statements, while loops, for loops, return statements, and assert
statements.

1 @fpy

2 def whetsonel(n: int):

3 t =0.499975

4 x1, X2, X3, x4 = (1.0, -1.0, -1.0, -1.0)
5 for _in range(n):

6 x1=(xT+x2+x3-x4)+t

7 x2 = (xT+x2-x3-x4)«t

8 x3=(xT-x2+x3+x4)+t

9 x4 = (-x1+x2 + x3 + x4) = t
10 return x1, x2, x3, x4

A Python function satisfying these restrictions may be trans-
formed into an FPy program by simply adding an @fpy decorator.
The example above is the first of eleven Whetstone benchmarks [6]
translated to Python and marked as an FPy program. Executing
this function, for example with whetstone1(10), runs this func-
tion in the FPy runtime (software floating-point numbers) rather
than Python’s native runtime (hardware floating-point numbers).
The FPy runtime allows the programmer to change the round-
ing behavior of the function, for example, using single-precision
floating-point values > instead of the double-precision floating-
point values to see how less precision affects overall accuracy. FPy
defines a single intermediate representation (IR) for its programs,
so a programmer may impelement their own interpreters, transfor-
mation passes, and program analyses. We implemented FPyDebug’s
real evaluator as an interpreter in FPy and FPyDebug’s profilers as
program analyses for FPy programs.

Zhttps://github.com/bksaiki/fpy
3Python does not support single-precision floating-point natively.
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5.2 Soundness

Importantly, intermediate numbers within FPyDebug’s real number
evaluator are intervals that always contain the actual result. FPyDe-
bug must ensure this invariant when invoking functions from an
external interval library like Rival. By default, Rival is insufficient
as an interface for handling interval values. Although it internally
maintains interval representations during computation, Rival ul-
timately rounds the result to the specified precision p, discarding
the underlying interval structure. This rounding is unsound: the
computed value is the nearest floating-point value to the real result
which deviates from the real result by some unknown amount.

To address this issue, we modified Rival to accept real intervals
as input and produce intervals as output. Therefore, neither Rival
nor FPyDebug prematurely converts an interval to a floating-point
value, avoiding the issue of unsound approximation. As a result,
Rival’s sound interval guarantee may be extended to FPyDebug.

5.3 Optimizations

To avoid unnecessary loss of precision via evaluation using Rival,
FPyDebug incorporates a number of basic optimizations.
Constants. Constants are preserved exactly when possible rather
than being evaluated. Some constants are not representable in
floating-point, so evaluation via Rival would convert the constant
into an interval with non-zero uncertainty. By deferring evaluation
until the constant is actually used in a computation, FPyDebug
ensures that its precise value is preserved as long as possible, mini-
mizing unnecessary interval widening.
Copy/Constant-Propagation. In addition, FPyDebug applies copy
propagation to avoid using Rival when possible. When an assign-
ment x = y occurs, the value of y is copied directly to x without
invoking Rival. Avoiding unnecessary rounding helps maintain ac-
curacy while improving efficiency. For similar reasons, FPyDebug
applies this technique for assignment of constants, e.g., x = c.
Exactness. Another optimization is tracking exactness of inter-
mediate variables. When Rival determines that an expression eval-
uates to an exact result, it produces a point interval, rather than
the rounding envelope for that value. During the precision assign-
ment algorithm, FPyDebug’s real number evaluator does not need
to recompute the expression at higher precision since increasing
precision only shrinks intervals: exact intervals are thus fixed.

6 Evaluation

We evaluate three research questions.

(1) Does FPyDebug allow users to easily and correctly identify
numerical error in programs? (Section 6.1)

(2) Can FPyDebug find sources of numerical error more accu-
rately than approximate methods like arbitrary precision
floating-point arithmetic? (Section 6.2)

(3) How often does FPyDebug’s real number evaluator succes-
fully compute the real number result? (Section 6.3)

We performed all experiments on Ubuntu 24.04.1 with an Intel
Core Ultra 7 155H CPU and 16GB of RAM. We used Python 3.13 to
run FPyDebug and used Racket 8.14 to build Rival.
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Our evaluation uses all 134 benchmarks from the FPBench repos-
itory. * The benchmarks are drawn from a variety of sources, in-
cluding textbooks on scientific computing and numerical analysis,
prior research papers on error detection, examples of code from
control devices or physics, and more. The benchmarks exhibit vary-
ing characteristics, ranging from small mathematical expressions,
to large programs (30 lines) with complex control flow like loops.

6.1 Case Study: Quadratic Formula

We analyze a representative case study drawn from the 134 bench-
marks from FPBench. It demonstrates how a user would use FPy-
Debug to diagnose numerical error in their programs. Most im-
portantly, FPyDebug allows the user to (i) remain entirely within
Python, allowing for tighter debugging loops and interfacing with
the broader Python ecosystem; and (ii) measures numerical error
accurately compared to approximate methods.

The case study is the usual quadratic formula (positive root only)
which computes a zero of a quadratic polynomial. We restrict the
function to inputs representing a polynomial with at least one
root, so it returns a valid, numerical answer. We can specify this
precondition as an argument to the @fpy decorator.

1 @fpy(pre=lambdaa,b,c:b+b>=4+a«c)
2 def quadratic_pos(a, b, c):
3 d=sqrt(b+b-4xaxc)
4 return (-b + d) / (2« a)

Diagnosis. First, we investigate if this implementation is accurate
using FPyDebug’s function accuracy profiler. For convenience, FPy-
Debug provides sampling methods for FPy function: the generated
inputs satisfy the precondition and are uniformly distributed along
the set of valid floating-point values rather than real numbers. The
function profiler (see Section 3.1) produces a report with the aver-
age error, maximum error, and number of inputs that FPyDebug’s
real evaluator failed on. For this case study, we use the ordinal error
metric mentioned in Section 3.1. Figure 4 shows the actual Python
code using FPyDebug to profile the initial implementation. The
profiler reports that the function has an average ordinal error of
28 (out of 64), roughly translating to having only 6 (of 17) correct
decimal digits on average.

@fpy(pre=lambda a,b,c:bxb>=4+a«c)
def quadratic_pos(a, b, c):
d=sqrt(b+b-4+axc)
return (-b + d) / (2 a)

profiler = FunctionProfiler()
inputs = sample_function(quadratic_pos, 256, seed=1)
report = profiler.profile(quadratic_pos, inputs)

Figure 4: Quadratic Formula. A naive implementation under
test with FPyDebug using 256 sampled input points. The
function suffers from multiple sources of numerical error.

*https://github.com/FPBench/FPBench/tree/494219a6289b471e24d02ce40de3f8db06odss4

639
640
641
642
643
644
645
646
647
648
649

650

652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695

696



697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751

FPyDebug: Numerical Accuracy Profiling

Switching to FPyDebug’s expression profiler (see Section 3.2),
we see that both expressions (line 3 and 4) introduce numerical er-
ror (replace FunctionProfiler with ExpressionProfiler). The
profiler reports the introduced ordinal error averages 22 and 14,
respectively. Thus, our implementation of the quadratic formula
suffers from at least two separate causes of numerical error.

Interoperability. Recall that we implemented FPyDebug as a Python
library for analyzing Python code. With little effort, we can inte-
grate FPyDebug with other Python libraries. Using plotting libraries
like matplotlib, the output of FPyDebug’s expression profiler may
be visually displayed for each expression with a histogram.

150 1
100 A
50 A
]
< 0- T T T T T
Q 0 10 20 30 40 50 60
# 200
150 A
100 A
50 A
0- T T T T T J—
0 10 20 30 40 50 60

Ordinal Error

Figure 5: Combining FPyDebug’s expression profiler with
matplotlib. For each expression, the profiler measures the
ordinal error introduced for either sqrt(b * b - 4 * a x ¢)
(top) or (-b + d) / (2 * a) (bottom). Across all function
inputs, there is either minimal or significant accuracy loss.

Figure 5 shows the results with the histogram for the expression
sqrt(b * b - 4 * a * c) on top and the histogram for the
expression (-b + d) / (2 * a) on bottom. For both expressions,
there is either minimal or significant accuracy loss, with few cases
between the two extremes. Thus, while the function may compute
the right value about half the time, the numerical error it suffers
from is often catastrophic. Importantly, visually identifying this
trend required a minimal amount of work; it required only ten
additional lines of code. Compared to prior work, FPyDebug is in-
tended to be lightweight: users can more easily integrate numerical
error detection from FPyDebug with other libraries for their own
debugging purposes.

Repair. FPyDebug does not provide any method of repairing numer-
ical error in programs, but FPyDebug can check that any repaired
programs no longer suffer from numerical error. A user may invoke
an automated numerical repair tool such as Herbie [18], or rely
on numerical analysis expertise to fix the problem on their own.
For example, Herbie produces, for our initial implementation, the
following program:

1 @fpy(pre=lambda a, b, c: b » b >= 4 » a « ¢, spec=quadratic_pos)
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2 def quadratic_pos_herbie(a, b, c):

3 if b <= -4e+123:

4 t=-b/a

5 elif b <= 3.05e-84:

6 t=(-b+sqrt(((b«b) - ((4+a)=c))))/(2+a)
7 else:

8 t=-c/b

9 return t

Meanwhile, Panchekha [17] describes a method of fixing the
quadratic equation that is superior to Herbie’s solution.

1 @fpy(pre=lambda a, b, c: b » b >= 4 » a « ¢, spec=quadratic_pos)
2 def quadratic_pos_panchekha(a, b, c):
3 x = sqrt(abs(a)) « sqrt(abs(c))
4 if copysign(a, ¢) == a:
5 d = sqrt(abs(b/2) - x) = sqrt(abs(b/2) + x)
6 else:
7 d = hypot(b/2, x)
8 if b<0:
9 t=(d-b/2)/a
10 else:
11 t=-c/(b/2+d)
12 return t

We can use FPyDebug to give useful feedback even for experts
in numerical analysis. Note that the spec keyword in the @fpy
decorator, when provided, overrides the FPy function FPyDebug
uses to compute the expected real result. This feature is especially
important when an implementation introduces approximations
like series expansions which may actually change the real number
behavior of the function. In this case, the spec keyword ensures we
compare against the real number semantics of the original program,
e.g., quadratic_pos, rather than (possibly different) real number
semantics of a program under test, e.g., quadratic_pos_herbie or
quadratic_pos_panchekha. FPyDebug’s function profiler reports
that Herbie’s implementation has an average ordinal error of 9.8
(compared to 28 of the original implementation); it reports that
Panchekha’s implementation has an average ordinal error of just
0.2.

6.2 Arbitrary-Precision Floating Point

Prior work [4, 7, 22] relies on a technique called arbitrary-precision
floating-point computation for detecting numerical error; this tech-
nique simply approximates the real number result by using floating-
point at sufficiently high precision. FPyDebug uses real number
evaluation instead to compute the true real number result up to
a given number of digits. While slower than arbitrary-precision
floating point, real number evaluation does not suffer from number
errors that may cause arbitrary-precision floating point to not de-
tect numerical error or incorrectly identify numerical error when
it too suffers from accuracy problems.

We analyze how well these techniques identify numerical errors
on 134 FPBench benchmarks. For each benchmark, we sampled
30 points uniformly on the set of input points considered valid
according to the benchmark’s precondition. This sampling method,
uniform sampling of the representation, differs from uniformly
sampling the (subset) of the real number line (hypercube); It is based
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on the observation that floating-point values are not uniformly
distributed over real numbers; and thus, better covers the set of
floating-point values that may actually be seen.

For each benchmark and its set of input points, we evaluated FPy-
Debug’s expression profiler on each input point with four different
real number references: FPyDebug’s real number evaluator and an
arbitrary-precision floating-point evaluator at 1024, 2048, and 4096
digits of precision uniformly. The arbitrary-precision floating-point
is provided by the FPy runtime. We aggregated per-expression error
estimates across the input points for both techniques.

We judge an expression to have numerical error when its mean
ordinal error is greater than 3 (an ordinal error of logz(10) ~ 3.3
corresponds to the last decimal digit being incorrect). For each real
number reference, we classify each expression according to the
following categories:

o True Positive (TP) / Negative (TN). The profiler correctly
identifies that the expression has / does not have error.

e False Positive (TP) / Negative (TN). The profiler incorrectly
identifies that the expression has / does not have error.

e Unknown Positive (UP) / Negative (UN). The profiler identi-
fies that the expression has / does not have error, but we
cannot establish if it is correct or not.

Since the real number evaluator produces the ideal real number, it
serves as the oracle of whether an expression suffers from numerical
error or not. When the real number evaluator fails, we cannot check
if errors reported by the profiler (for any real number reference)
are actually errors for that benchmark. For these benchmarks, we
classify an error reported by the profiler as unknown positive (UP),
or unknown negative (UN) if no error is reported.

Technique | TP | FP | FN | TN | UP | UN
Real 42 1 0 | 0 | 236| O 0
p=1024 |40 | O | 2 | 235 | 13 | 124
p=2048 | 41 | © 1 1235 13 | 124
p=409 | 41 | 0 1 |236| 13 | 124

Figure 6: Comparing expression profiling with different
real number references: FPyDebug’s real number evaluator
arbitrary-precision floating-point at 1024, 2048, and 4096 dig-
its of precision. Arbitrary-precision reports a false negative
twice at 1024 digits but only once for 2048 and 4096 digits.
Real number evaluation fails for 6 benchmarks which pro-
duces a number of unknown positives or negatives.

Figure 6 shows the results by expression for each of the four real
number references over the 134 benchmarks from FPBench. Over-
all, the results are similar: the arbitrary-precision floating-point
references report only two, one, and one false negative, respectively.
Thus, FPyDebug’s real number evaluator is slightly more accurate
than floating point, an approximate method. However, FPyDebug’s
real number evaluator fails for six benchmarks. As a result, we
cannot classify 137 expressions profiled by the floating-point inter-
preters. We note that we skipped 13 additional benchmarks: 3 had
infinite loops (intended for static analysis tools), 3 had FPy tensor
operations (FPyDebug does not support tensor operations), 4 timed
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out after 5 minutes for the real number evaluator, and 3 timed out
for the arbitrary-precision floating-point evaluators.

The accuracy gain of real number evaluation over arbitrary-
precision floating point is marginal for these benchmarks. While
simple examples may be constructed to show how these real number
references deviate, these benchmarks do not suffer much from these
cases. However, we note that the mismatch in the total number of
expressions is due to the real number reference choosing a different
branch than the floating-point interpreter. In addition, the profiler
using floating-point produced a false positive when comparing for
individual input points, but too few to affect the aggregate view.
These observations together suggest a user would prefer approxi-
mate methods like arbitrary-precision floating point for numerical
accuracy profiling unless accuracy is absolutely required. In these
cases, arbitrary-precision floating point would be insufficient since
it may choose the wrong branch, incorrectly identity numerical
error, or not identity numerical error at all.

6.3 Real Number Evaluation Performance

We analyze how FPyDebug’s real number evaluator behaves on
134 FPBench benchmarks, specifically its running time and how
often it successfully evaluates a function for an input point. Recall
from Section 4, that FPyDebug’s real number evaluator may raise
an exception to signal that an intermediate computation required
excessive precision to compute accurately, beyond a limit imposed
by the Rival library. The running time measures the overhead im-
posed over arbitrary-precision floating-point, while the percentage
of successful evaluations measures reliability.

For each benchmark, we sampled 256 points uniformly on the
set of input points considered valid according to the benchmark’s
precondition using the same sampling methods as described in
Section 6.2. For each benchmark and its set of sampled input points,
we ran FPyDebug’s real number evaluator and classified the eval-
uator as successful if it produced a real number result or failed if
it raised a precision exception. For each successful evaluation, we
measured the performance overhead of real number evaluation over
arbitrary-precision floating-point uniformly at 1024, 2048, 4096 dig-
its of precision. We separate the benchmark suite into two groups:
benchmarks without loops and benchmarks with loops.

Benchmark | Total | Skipped | Success Rate Overhead
loopless 114 0 96.5% 2.57,2.91, 2.64
loops 21 10 24.8% 13.1, 15.4, 14.5
all 134 10 90.2% 2.56, 2.87, 2.63

Figure 7: Running FPyDebug’s real number evaluator on
134 benchmarks organized by benchmark type. We list the
number of benchmarks and number of benchmarks skipped
for each group (no points evaluated successfully). We also list
the percentage of sampled points evaluated successfully and
the performance overhead over arbitrary-precision floating-
point at 1024, 2048, and 4096 digits, respectively.

Figure 7 shows the results of running FPyDebug’s real eval-
uator on the benchmarks. FPyDebug’s real number evaluator is
highly successful on benchmarks without loops (21), producing a
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real number result, rather than precision exception, for 96.5% of
sampled points. In addition, the performance overhead for this eval-
uation method over arbitrary-precision floating-point evaluation is
2.57,2.91, 2.64 times, respectively. However, for benchmarks with
loops (21), the results are worse: FPyDebug’s real number evaluator
only successfully produces a real number result 24.8% of the time
and imposes a 13.1, 15.4, 14.5 times overhead when it is successful.
Out of the 21 benchmarks, 10 were skipped: 3 had infinite loops
(intended for static analysis tools), 3 had FPy tensor operations
(FPyDebug does not support tensor operations), 4 did not evaluate
over the sampled points under a 5 minute timeout.

The FPyDebug’s real number evaluator works well for smaller
programs with a small number of statements (1 to 10 statements).
For these programs, real number evaluation has a relatively low
failure rate and performance overhead, so it serves a reasonable
real number oracle for profiling numerical accuracy. However, the
real number evaluator scales poorly in terms of the number of
expressions it must evaluate with Rival. Poor scaling explains the
higher failure rate and larger performance overhead for benchmarks
with loops: the necessary precision increases when the number of
total operators increase. We believe that this trend would be visible
in large straight-line programs. For these programs, a user may
prefer approximate methods like arbitrary-precision floating-point
for numerical accuracy profiling.

7 Limitations and Future Work

FPyDebug works on FPy functions, rather than general Python func-
tions, so it is limited to the set of features that FPy supports: com-
mon statements like conditional statements, while and for loops;
operators for only boolean and real (integer or float) values. Im-
proving FPyDebug’s applicability requires expanding the subset of
features of Python that FPy supports. In addition, the success rate
of FPyDebug’s real evaluator is based on the tightness of intervals
returned by the underlying interval library. Research in improving
interval libraries would greatly enhance the FPyDebug’s usefulness
in practical applications.

Neither FPyDebug nor Rival is guaranteed to be sound; any
defect may cause FPyDebug’s real number oracle to produce an in-
correct result and misidentify rounding error. Our evaluation relied
on sampling methods to produce representative inputs to functions.
Improved sampling methods, including different sampling distri-
butions, may classify numerical errors differently. Finally, while
we ran FPyDebug on a large set of benchmarks, it would be useful
to see how FPyDebug would be used in broader applications like
scientific computing or machine learning. A user study or field
study is needed to determine how beneficial FPyDebug is for actual
programmers.

8 Related Work

This paper is about dynamically detecting numerical error in Python
programs using a real-number oracle based on arbitrary-precision
interval arithmetic to detect numerical errors.

Dynamically Detecting Numerical Error

The most common technique in dynamically detecting numerical
error is to instead use additional floating-point precision as a proxy
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for the true real number value. FPDebug [2], Herbgrind [22], and
PositDebug [4] all perform shadow execution using high-precision
floating-point computation; the first two tools leverage the Valgrind
framework while the last one uses compile-time instrumentation.
Another approach to increasing precision are error-free transforma-
tions (EFTs) which extends each floating-point number with addi-
tional error terms. Shaman [10] relies on EFTs to dynamically track
rounding error, recording the number of significant digits for each
computation. EFTSanitizer [5] combines EFTs with compile-time
instrumentation techniques from PositDebug. Other dynamic ap-
proaches include proxy metrics that do not directly measure actual
floating-point error in a program. For example, Herbie [18, 20, 21]
relies on local error heuristic to estimate an operator’s individual
contribution of numerical error; it localize repair efforts on regions
of a program with high local error. HiFPTuner [13] combines de-
pendence analysis and edge profiling with community detection
algorithms to identify operators and variables where precision tun-
ing may be applied to improve numerical accuracy.

Statically Bounding Error

In contrast to dynamic analyses for detecting numerical error, static
analysis techniques attempt to bound the expected numerical error
of a program via symbolic techniques such that the error bound
is sound, yet maximally narrow. These techniques include classi-
cal numerical analysis methods, optimization, formal verification
methods, and type systems. In numerical analysis, FPTaylor [24]
leverages symbolic Taylor expansions which propagate symbolic
error terms through a program to compute tight error bounds of
floating-point expressions. Later, Satire [9] extends the techniques
of FPTaylor by adding path strength reduction, rewriting error
bound expressions, and replacing subexpressions by “summary”
nodes. These additions allow Satire to scale to expressions that
are many orders of magnitude larger than the expressions that
FPTaylor can capably handle. Traditional optimization techniques
may be applied to statically detecting numerical error. For example,
Real2Float [15] applies semi-definite programming to compute error
bounds on polynomial expressions. Other approaches to statically
detecting numerical error include formal verification methods like
SMT solving and theorem proving. Rosa [8] compiles real number
functions with preconditions on inputs and accuracy postcondi-
tions to finite-precision floating-point code; it relies on an SMT
solving to prove that the produced code soundly meets the required
accuracy bound. Precisa [25] analyzes floating-point programs to
produce symbolic error bounds along with formal proof certificates.
More recently, Numerical Fuzz [14] is a type system for bounding
numerical error of functions: function types track the maximal rela-
tive error they introduce and how error in the inputs are amplified.
Notably, when a function type checks, the type system guarantees
the declared output error bound is always met.

Real Number Evaluation

While real number computation is undecidable in general, there
is significant prior work in doing so approximately to a sufficient
degree or exact in specific cases. MPFR [12] is the state-of-the-
art arbitrary-precision floating-point library that is available in
many programming languages; it guarantees correct rounding of
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many arithmetic and transcendental functions at a user-specified
precision. MPFI [19] introduces arbitrary-precision interval arith-
metic which uses intervals with arbitrary-precision floating-point
endpoints. Each of its operations soundly round outwards: if the
arguments to an interval function contain the intended real number
value, the output interval must always contain the true real number
result. Rival [11] introduces movability flags to arbitrary precision
interval arithmetic to detect when increasing the working precision
will not tighten the resulting interval to a given target width. FPy-
Debug also uses arbitrary-precision interval arithmetic, extending
techniques from Rival [11] to evaluate programs with statements
instead of just expressions. Finally, Boehm proposes an API for
real numbers by combining rational arithmetic with recursive real
arithmetic; these ideas are now implemented in Google’s Android
calculator.

9 Conclusion

FPyDebug introduces two accuracy profilers for identifying numer-
ical error in floating-point programs: a function profiler to measure
deviation in the floating-point and real number results of functions,
and an expression profiler to find expressions that are likely con-
tributing to such observable errors. To do so, FPyDebug leverages
a real number evaluator to compute the correctly rounded result
which can be used as an accurate oracle. We demonstrated FPyDe-
bug helps a user identify numerical errors easily in a case study. We
then showed that FPyDebug more accurately finds numerical errors
than approximate methods like arbitrary precision floating-point
computation. Finally, we showed that FPyDebug’s real evaluator
successful evaluates 90% of the time with an average overhead of
2.9% over arbitrary-precision floating-point computation.
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