
CheckedShapes

Mark Pock
markpock@uw.edu

University of Washington
Seattle, USA

Matthew Taruno
mtaruno@uw.edu

University of Washington
Seattle, USA

Michael Xu
xu.michael@gmail.com

University of Washington
Seattle, USA

1 Introduction

Shape error is a common class of errors in deep learning programs
which occurs when applying operations on tensors of incompatible
shape. We propose a tool which statically checks for shape error
in PyTorch programs, a task we will call "shape checking" PyTorch
programs. We compile this fragment to the dependently typed
language and interactive theorem prover Lean 4. We then use Lean 4
metaprogramming to automate verification of the shape correctness
of the program. We conclude – supporting findings by Lagouvardos
et al. in [5] – that shape checking of imperative deep learning
programs in commonly used languages is best understood as a
separate, pluggable, interprocedural whole-program analysis rather
than as an element integrable with their existing type systems. In
addition, we conclude that an interactive theorem prover does not
add any inherent value to a pluggable whole-program analysis,
either in interpretability or in ease of bootstrapping computation.
However, the methodology we explore here may contain, in the
rare applications that are already inclined towards dependently
typed languages, the kernel of the methodology required to design
usable verified DSLs in said languages.

1.1 Defining shape error

Before proceeding further, we will define what we mean by shape
error. First, let us consider a small mathematical example of shape
error: adding the two vectors ⟨1, 2, 3⟩ and ⟨4, 1⟩. Since vector ad-
dition is defined elementwise, the formula ⟨1, 2, 3⟩ + ⟨4, 1⟩ has no
meaning. We say that vector addition requires shapes (𝑘), (𝑘) in its
operands – both operands need to have 𝑘 entries. More generally,
shape error in a mathematical context occurs when attempting
to apply operations on tensors which do not satisfy their shape
requirements.

Let’s consider how this might manifest when writing a deep
learning program. Consider the formula for transformer attention,

Attention(𝑄,𝐾,𝑉) := softmax
(
𝑄𝐾𝑇
√
𝑑

)
𝑉

(where𝑄,𝐾,𝑉 are matrices with 𝑛 rows and𝑑 columns). The follow-
ing PyTorch code appears to be a straightforward implementation
of the attention formula.

def a t t e n t i o n (query , key , v a l u e) :
d_model = query . shape [−1]
s c o r e s = (query@key . T) / (d_model ∗ ∗ 0 . 5)
return F . so f tmax (s c o r e s , dim = −1) @ v a l u e

where @ stands for matrix multiplication. This succeeds when
query, key, and value are all matrices with 𝑛 rows and 𝑑 columns,
but a common practice in deep learning is to store lists of matrices
as higher-rank tensors – a list of length 𝑏 of tensors of shape (𝑛,𝑑)
gets converted into a tensor of shape (𝑏, 𝑛, 𝑑). We thus consider
running this code when query, key, and value are all tensors with

shape (𝑏, 𝑛, 𝑑). We attempt an undefined matrix multiplication on
the second line between query, which has shape (𝑏, 𝑛, 𝑑), and key.T,
which has shape (𝑑, 𝑛, 𝑏). This is because PyTorch’s transpose op-
eration will reverse the shape (𝑏, 𝑛, 𝑑) to the shape (𝑑, 𝑛, 𝑏) when
what is required is a tensor of shape (𝑏, 𝑑, 𝑛). In particular, matrix
multiplication between two tensors of rank 𝑟 > 2 requires that the
first 𝑟 − 2 dimensions match and that the last two dimensions of
the two tensors involved are𝑚,𝑛 and 𝑛,𝑑 for some𝑚,𝑛,𝑑 .

1.2 Motivating shape error

A typical deep learning program consists in the definition of a
model, preprocessing of data, running the model on the data, and
any postprocessing on the result. Many deep learning programs
also have a training component, in which a model is either trained
from scratch or finetuned on domain-relevant data. Shape error can
occur in all parts of of deep learning programs. Islam et al.’s com-
prehensive study on deep learning bug characteristics [2] identifies
shape errors occurring within the definition and training of the
model separately from shape errors occuring within preprocessing
and postprocessing of data. Together, they comprise 45% of the
observed bugs in TensorFlow code.

Deep learning computations can be expensive. Any runtime er-
rors that occur after a significant portion of a computation has been
performed (but before results of the computation have been saved)
waste the developer time and CPU time that went into the compu-
tation. Even if developers run computations on smaller amounts of
data (which they often do) before upscaling to their full datasets,
the time spent generally remains non-negligible. Thus, shape errors
become more devastating the later in the program they occur. A
shape error which occurs in the final stages of the pipeline wastes
all of the time and computation that went into the previous stages
of the pipeline. Identifying shape errors statically means that devel-
opers will not have to wait until the final stages of the pipeline and
the subsequent crash of their program to diagnose error. We thus
pose the research question: "With the aid of Python annotations,
can we statically check the correctness of tensor operations with
respect to shape?"

1.3 Contribution

We attempt to compile PyTorch programs to the dependently typed
language and interactive theorem prover Lean 4 in order to verify
their shape correctness. We chose PyTorch over the other popular
machine learning framework, TensorFlow, in order to verify the
shape correctness of machine learning programs "at compile time"
without resorting to analyzing a secondary computation graph
(which TensorFlow explicitly creates and TensorFlow analyses use).
We originally hypothesized that

(1) Tensor operations could be easily specified via dependent
types in Lean 4.

Mark Pock, Matthew Taruno, and Michael Xu

(2) Lean 4 would be a target language which would not impose
significant restrictions on the code being verified.

(3) Composed tensor operations could be easily verified for
shape correctness through various forms of proof automa-
tion.

(4) The generated Lean 4 output would be more interpretable
than comparable output from non-modular whole-program
analyses (insofar as it would provide a human-readable
proof of shape correctness).

We now argue that all hypotheses except the first hypothesis fail.
In particular, we affirm the argument made by Lagouvardos et
al. that shape checking is best characterized as a context-sensitive,
whole-program analysis and that "A statically-typed TensorFlow-
like system would either require significant programmer assistance
for sound reasoning, or curtail the flexibility of operators, to permit
assigning them closed-form types" [5] (likewise for PyTorch). We
thus conclude that we fail to statically check the shape correctness
of tensor operations with Lean 4. In particular, we claim that treating
shape checking of machine learning code with the expressivity of
modern machine learning DSLs as a type checking problem leads to
the necessary of term synthesis for existential witnesses, a problem
that proof automation in interactive theorem provers is ill-equipped
to deal with.

We do make some few unique technical contributions from the
perspective of Lean 4. First, we show the feasibility of interacting
with Python code in Lean 4 through C shims, opening the door for
Lean 4 to interoperate with widely used Python libraries. Second,
we demonstrate that Lean 4 metaprogramming can be usefully
decoupled from the Lean 4 parser and used as a high-level code
generator. Third, we demonstrate potential hurdles that a useful
shape-correct machine learning library in Lean 4 would have to
overcome to be usable.

2 Related work

In this section, we explore a variety of approaches to shape checking
deep learning code. Before we do so, we should note that not all
approaches to reduce shape error involve shape checking – some
approaches instead involve making shapes more explicit in code.
For example, einstein-inspired notation provides an alternative
notation for tensor operations which makes shape explicit, which
couples shape to operations, reducing shape errors [8].

2.1 Dynamic approaches

Dynamic approaches in software analysis involve analyzing a pro-
gram during its execution to understand its behavior, performance,
and interactions within its environment. Unlike static analysis,
which examines code without running it, dynamic analysis is bene-
ficial because it is precise as through running the code, we are able
to ensure no false positives.

First, deep learning frameworks often support debugging rou-
tines that enhance runtime assertion capabilities (e.g.
tensorflow.debugging.assert_shapes) at function entry and exit.
Dynamic type checkers are in a similar vein. Libraries such as
typeguard [10] perform runtime asserts that type requirements are
satisfied at function entries and exits, aided by annotation libraries
such as jaxtyping [3].

ShapeIt [12] performs dynamic analysis to infer symbolic rela-
tionships between tensor shapes during runtime given concrete
values. For example, given a multiplication of two tensors with
shapes (3, 4) and (4, 5), ShapeIt outputs symbolic shapes (𝑎, 𝑏) and
(𝑏, 𝑐)) respectively, highlighting the relationship between the di-
mensions. By capturing these symbolic relationships, ShapeIt can
detect inconsistencies. For instance, if a subsequent operation in-
correctly assumes that (𝑏, 𝑐) is of a different shape, ShapeIt would
identify this mismatch. This approach enables the detection of shape
mismatches without requiring users to explicitly define shape spec-
ifications in their code.

ShapeFlow [11] is a dynamic abstract interpreter tailored for
TensorFlow. It constructs a secondary shape computation graph
before the actual TensorFlow computation graph, which it then ver-
ifies for shape correctness. By executing this shape-centric graph,
ShapeFlow can identify shape incompatibility errors before the
actual computation occurs. This method leverages TensorFlow’s
static graph construction, allowing for pre-execution shape verifica-
tion. However, implementing a similar approach in frameworks like
PyTorch, which utilize eager execution, would be challenging and
might necessitate replicating TensorFlow’s graph-based execution
model.

2.2 Static approaches

Static approaches to shape checking have largely fallen into two
camps. First, we consider whole-program analysis tools which use
solvers to validate all instances of primitive operations (e.g. ma-
trix multiplication itself; more generally, the basic library routines
provided by machine learning frameworks). Since many tensor
operations depend on values produced far away in the code, these
tools can certify a program correct in cases where the correctness is
highly contingent on the particular shapes of tensors being passed
into functions. Second, we consider tools which broadly rely on us-
ing powerful type systems to validate not only primitive operations
but also more complex operations composed from these primitives.
These tools provide extensibility and modularity.

We highlight two whole-program analysis tools with a similar
flavor, one for PyTorch and one for TensorFlow. Pythia [5] (which
runs over Tensorflow programs) performs a whole-program shape
analysis building on a variety of interrelated other analyses (e.g.
pointer analysis) expressed as a series of Datalog rules for each
PyTorch operator. We originally hypothesized that we might chal-
lenge the claim made in [5] that a statically typed system capturing
the nuances of modern machine learning code would be overly
constraining and require programmer assistance. However, we now
affirm the findings of [5]. In particular, in attempting to verify ma-
chine learning code, we find ourselves enmeshed in problems deeply
reminiscent of logic programming which make the Datalog-based
approach of Lagouvardos et al. extremely attractive.

PyTea [4] (which runs over PyTorch programs) generates con-
straints on paths that lead to successful execution of PyTorch pro-
grams without shape error, then sends these constraints to the
SMT solver Z3. We highlight PyTea largely because it fills a void
for PyTorch programs. Because PyTea examines all possible paths
and generates verification conditions by abstractly executing the

CheckedShapes

machine learning code, PyTea cannot handle programs with un-
bounded loops or recursion, and in fact unrolls all loops to obtain
pure straight-line code. We originally hypothesized that a type
system approach could overcome this problem. However, the poly-
morphism required for an effective type system approach requires
significant programmer annotations.

Previous research has often explored powerful type systems for
tensor shape checking in languages outside of Python. For example,
Hattori et al. [1] propose a gradually typed tensor shape inference
and shape checking tool that operates over OCaml programs. Simi-
larly, Stites et al. use gradual refinement types in Haskell to shape
check tensor programs [9]. However, Python remains the lingua
franca of the deep learning community, so integrating the benefits
of these tools into everyday deep learning use remains challenging.

Variadic generics were introduced in 2022 in Python 3.11 through
PEP 646, enabling the definition of classes and functions that can
accept an arbitrary number of type parameters. This feature is
particularly beneficial for annotating tensor shapes in numerical
computing libraries, as it allows for more precise type definitions
that can express the dimensions of arrays or tensors [6]. However, as
of now, static type checkers like mypy do not fully support variadic
generics, limiting its practical utility for static type checking in
deep learning applications. Nevertheless, variadic generics have
found some success in dynamic type checking. To use a dynamic
typechecker to preemptively identify shape error at runtime, users
annotate the relevant function with types like Tensor[..., 1, 2, 3].
Tools like typeguard are subsequently able to verify that tensors
passed to the function actually do have these shapes.

Finally, we highlight one tool which does attempt a typechecking
approach in Python. Roesch et al. [7] introduces Relay, a functional
and statically typed intermediate representation (IR) designed to
serve as an alternative computational graph to the Apache TVM
backend. Relay uses dependent types to express the types of tensor
computations, as we plan to do. However, we feel that Relay has
a similar flavor to ShapeFlow [11] in the sense that both rely on
shape-checking a secondary graph before the execution of the
program. We aimed to verify shape correctness without explicitly
constructing a secondary graph.

3 Approach

In this section, we present an approach for shape checking PyTorch
code. We first compile PyTorch to Lean 4 via a fairly straightfor-
ward syntactic translation. The nature of our syntactic translation
already makes many Python features difficult to express, and so
they are not implemented in our artefact. Second, we apply Lean
4 metaprogramming to verify the resultant code as Lean 4 code
through automated proof.

3.1 Research question

PyTorch and TensorFlow are two of the most common deep learning
frameworks today. Traditionally, PyTorch programs are executed ea-
gerly while TensorFlow programs are executed lazily. Since Python
is an eagerly evaluated language, this means that a TensorFlow
expression evaluates to a node in a global computational graph. The
computational graph itself is then evaluated when necessary. Tools
that operate over TensorFlow programs have been able to leverage

the computational graph to great effect (e.g. ShapeFlow [11]). More
broadly, tools that operate by wrapping a secondary layer around
evaluation can then perform analysis right before evaluation, thus
avoiding the worst costs of shape errors. Relay [7] takes this ap-
proach as well. This computational graph approach has proved
to be viable for lazily evaluated deep learning programs. How-
ever, eagerly evaluated deep learning programs (such as PyTorch
programs) demand different strategies. We attempted to present
a methodology that works for eagerly executed programs, and so
chose to focus on PyTorch programs. Furthermore, we were in-
terested in the potential of dependent types for easy specification
of tensor operations; and in the potential of interactive theorem
provers for interpretable verification proofs. We thus refine our
previously posed research question in (§1.2) – "can shape error be
statically checked in PyTorch programs using dependently typed
specifications?"

3.2 Dependent types

First, we will present the platonic ideal for shape checking PyTorch
code with dependent types. We will first define some terms. For
our purposes, a tensor is a multidimensional array. The shape of
the tensor is a nonempty list of positive numbers where each entry
gives the size of the 𝑖th dimension. For example, a tensor with shape
[2, 6] is a 2× 6 array; a tensor with shape [5, 1, 3] is a 5× 1× 3 array.
The rank of the tensor is the length of its shape (i.e. its number of
dimensions). Now, consider the mathematical definition of matrix
multiplication. The operation is well-defined exactly when the inner
dimensions of its two arguments are the same. Then, the result of
the matrix multiplication is now a matrix with the outer dimensions
of both arguments.

We will now consider how to formalize this operation in a depen-
dently typed language. In most programming languages, values are
allowed to depend on values through the usual notion of function
(which takes a value and output a value). The successor function is
one such function, and its type may be written as

successor : N → N

Many programming languages also have constructions through
which values are allowed to depend on types: polymorphism – one
writes a function that takes a type as an argument and outputs a
value, e.g. the identity function, whose type we write

identity : ∀𝛼 : Type, 𝛼 → 𝛼.

Many programming languages also have constructions in which
types are allowed to depend on types – generic types. For example,
consider a function that takes a type 𝛼 and returns the type of lists
of this type List 𝛼 (this function is in fact just List itself). We write
the type as

List : Type → Type.

The last kind of dependency, and the kind which concerns us most
here, is the dependency of types on values. This is a much less fa-
miliar construction, but the pattern is the same. Consider a function
that takes a number 𝑛 : N and returns the types of lists of natural
numbers of length 𝑛. Call this function NatVec. We write the type
of this function as

NatVec : N → Type.

Mark Pock, Matthew Taruno, and Michael Xu

Now, consider an elementwise sum between a pair of vectors of
naturals, which requires that both arguments have the same length.
We can now express this constraint as
ElementwiseSum : ∀𝑛,NatVec(𝑛) → NatVec(𝑛) → NatVec(𝑛).

We now consider a type constructor Tensor : List(N) → Type. We
can then express the matrix multiplication constraint that the inner
dimensions must match as

Matmul : ∀𝑚,𝑛,𝑑 : N,
Tensor([𝑚,𝑛]) → Tensor([𝑛,𝑑]) → Tensor([𝑚,𝑑]).

With this representation, it now becomes clearer why dependent
types are necessary: while we might imagine representing Tensor

as an ordinary generic type, we would be unable to represent the
dimension constraints on matrix multiplication at the type level.
We require information about the dimensions of tensors at the type
level in order to represent tensor operations.

In fact, the matrix multiplication operation commonly used in
deep learning code is more expressive than the matrix multiplcation
given before. This is because it admits tensors of any rank, and treats
the product as a batched matrix multiply done by iterating over the
first rank−2 dimensions and computing the usual matrix product in
the last 2 dimensions. We can now specify this operation as follows.
This operation takes two tensors with all their dimensions except
the last two identical. Then, if the last two dimensions of the first
tensor are𝑚 and 𝑛 and the last two dimensions of the second tensor
are 𝑛 and 𝑑 , the two tensors admit a multiplication. This can be
represented as

@ : ∀𝑚,𝑛,𝑑 : N,∀𝑣 : List(N), Tensor(𝑣 ++[𝑚,𝑛]) →
Tensor(𝑣 ++[𝑛,𝑑]) → Tensor(𝑣 ++[𝑚,𝑑])

where ++ is the list concatenation operation. We will call opera-
tions like these which do not constrain the rank of their arguments
rank-polymorphic operations. We will see that rank-polymorphism
(which is a critical part of modern deep learning APIs) poses a prob-
lem for our type system approach to verifying shape correctness of
tensor operations.

In this Platonic ideal for shape checking PyTorch code, having
specified matrix multplication, we can now compose it trivially,
and the typechecker will without further effort either certify that
our code is shape correct or will show us that it fails to be shape
correct at a particular location. For example, when multiplying
tensors of shapes [3, 4, 2] and [3, 2, 5], we should expect to get a
result of [3, 4, 5]. When multiplying tensors of shapes [3, 4, 2] and
[2, 2, 5]; we should expect to see that no 𝑣 could be found such that
[3, 4, 2] = 𝑣 ++[4, 2] and [2, 2, 5] = 𝑣 ++[2, 5]. We will see that this
ideal fails in §4.2, and we will explore a number of responses to its
failure.

4 Pipeline

We will now go through the structure of our pipeline in more detail
and consider the challenges which we faced in attempting to verify
the shape correctness of code in the manner supposed by § 3.2.
We also elaborate a few technical contributions which we make
from the perspective of software development in Lean 4 – showing
the feasibility of Python-Lean interop, showing that the Lean 4
parser and elaborator can be usefully decoupled to use the Lean 4

Figure 1: End-to-end pipeline for CheckedShapes. We start

with the Python AST library to parse Python code. Subse-

quently, we translate the Python data structure into an ap-

propriate Lean data structure via the C FFI. In particular, we

leveraged Alloy, which embeds C into Lean. Finally, we lever-

age Lean metaprogramming to translate the data structure

into Lean code, whichwill either typecheck or not typecheck.

elaborator as a code generator, and illustrating challenges that face
any practical Lean 4 machine learning DSL.

4.1 Parsing and code generation

We only consider a limited subset of Python code for verification.
We consider assignment statements, for loops, and function calls;
and suppose that functions are in a normal form with one return
statement closing the body of the function. We assume that an-
notations are given on the function parameters and possibly the
return type. We expect annotations given on function parameters
to be relatively simple – usually just constraining the minimum
rank of input tensors and naming the upper or lower dimensions.
However, annotations on the return type may be quite complicated,
as the shapes of the results of tensor operations may not always be
expressible in a simple way, especially for rank-polymorphic func-
tions. For example, the transpose operation creates a new tensor
whose shape is the reverse of the same of the original. If the rank
of the original tensor with shape 𝑠 is unknown, the best we can do
is to say that its new shape is reverse(𝑠) (where reverse is a purely
formal expression).

We use the ast Python library to parse Python code. We then
interoperate with it through the Lean 4 foreign function interface.
In particular, we use the Lean 4 DSL Alloy to write inline C in Lean
(approximately speaking). It is worth reflecting on some other op-
tions for parsing Python code and the advantages or disadvantages
they might confer.

(1) Using an existing Python parser and interoperating with it
through the FFI. As noted above, this is the option we ulti-
mately chose. Its primary benefit lies in being able to piggy-
back off code written in other languages – here, parsers, but
an additional benefit would be in conducting an initial stage
of analysis in an existing analysis framework, then sending
these results to Lean 4. This horizon in particular would
make this option the right choice if this line of work were
continued, given the challenges we faced when conducting
analysis entirely in Lean.

CheckedShapes

(2) Using the Lean parser to parse Python as a DSL. The Lean 4
parser is user-extensible – users can declare new syntactic
categories for it to parse, which enables creating embedded
DSLs through metaprogramming. We earlier mentioned
Alloy, a Lean 4 DSL which enables writing inline C and ex-
pedites Lean-C interop. This strategy would take the same
approach as Alloy – create a Lean 4 DSL which enables writ-
ing inline Python. For the scope of our project, this strategy
would actually have been the best strategy. It would enable
us to leverage the Lean 4 UI, including the infoview and
error handling. Moreover, it would allow us to soundly en-
force the constraints we place on Python code, including
both the constraints we explicitly afford for above and the
constraints which arose in the course of work. However,
this would hamper any possible adoption by Python de-
velopers, since instead of sitting as a standalone analysis
tool, this tool would be deeply enmeshed in the Lean 4
ecosystem.

(3) Writing a Python parser from scratch in Lean. We initially
supposed that writing a Python parser from scratch would
be a relatively uninteresting (with respect to the aims of the
project) and ultimately extraneous task. However, given the
amount of work that went into writing the C shim between
the Python parser and the constraints we impose on Python
code, this was probably the wrong determination. For our
project, either this or the above option would have been
better suited to our scope and goals.

As alluded to, we dwell on the method for our frontend largely
because a) it consumed an unforeseen amount of work and b) be-
cause it points towards a development of technical relevance for
Lean 4 developers – the possibility of effectively interoperating
with Python, thus gaining access to widely used libraries.

We then use Lean 4 metaprogramming techniques to generate
Lean 4 code which is roughly one-to-one syntactic translation of the
input Python code. As mentioned above, the Lean 4 parser is user-
extensible, and so Lean 4 provides extensive metaprogramming
capabilities that allow users to write DSLs. Here, however, we use
Lean 4 metaprogramming in a different way – instead of elaborating
fragments of Lean 4 code parsed by the Lean 4 parser, from the
perspective of Lean 4, we generate Lean code ex nihilo. Rather,
we should say that we decouple the Lean 4 parser and the Lean 4
elaborator, and show that Lean 4 metaprogramming can be used
with an alternative frontend (here, the Python ast library).

Here is an example of the "roughly one-to-one syntactic trans-
lation" between Python and Lean which we create using metapro-
gramming. The Python program

def f (
a : ' Tensor ␣ (4 , ␣ 5) ' ,
b : ' Tensor ␣ (4 , ␣ 6) ' ,
c : ' Tensor (6 , ␣ 5) '

) −> ' Tensor ␣ (4 , ␣ 5) ' :
d = b @ c
e = a + d
return e

compiles to the Lean program

def f :
Tensor (Shape . append (Shape . l i f t 4)

(Shape . append (Shape . l i f t 5)
(Shape . n i l))) −>

Tensor (Shape . append (Shape . l i f t 4)
(Shape . append (Shape . l i f t 6)
(Shape . n i l))) −>

Tensor (Shape . append (Shape . l i f t 6)
(Shape . append (Shape . l i f t 5)
(Shape . n i l))) −>

Tensor (Shape . append (Shape . l i f t 4)
(Shape . append (Shape . l i f t 5)
(Shape . n i l))) : =

fun a b c => I d . run do
l e t mut d : = Tensor . PrimOp . matmul b c
(by reso lvePr imOp)
l e t mut e : = Tensor . PrimOp . add a d
(by reso lvePr imOp)
r e t u r n e

There are several features of note which will become important
when exploring how we attempted to verify shape correctness.

(1) Annotation syntax. We see that the parameters to 𝑓 are
annotated with strings, not Python type expressions. This is
in order to support an annotation syntax which can express,
e.g. the concatenation of shapes; reversing a shape; etc. This
has the unwanted side effect of making our annotations not
compatible with any existing annotations that use the type
expression for Tensor with variadic generics already.

(2) Deep rather than shallow embedding of shapes. We then have
to consider how to embed this syntax into Lean. In §3.2,
we presented a Platonic ideal of shape checking which di-
rectly parameterizes tensors over lists as shapes – a shallow
embedding. We found it considerably more expedient to
work with a deep embedding – representing the allowable
operations on lists as abstract syntax in a Shape type.

(3) Monadic embedding. We earlier hypothesized that Lean 4
could provide a "one-to-one" syntactic equivalent of Python
in many respects. This is true, up to a point, but is only
possible when using the syntactic features of do-notation,
which requires working inside a monad. Here, we use the
identity monad; we will explore complications of this choice
in the next section.

(4) Additional argument to operations. The one major respect in
which this code differs from Python is in the required third
argument to matmul and add. This argument, given to both
as by resolvePrimOp, attempts to explicitly construct the
proof of shape correctness.

Regardless of the success or failure of the verifier, we show
that we are able to specify tensor operations via Python shape
annotations and translate an appropriate subset of Python in a
faithful way to Lean 4.

Mark Pock, Matthew Taruno, and Michael Xu

4.2 Verification

In §3.2, we presented a Platonic ideal of shape checking in which the
type checker would be able to automatically infer, at least in simple
cases, the result type of a tensor operation. In fact, this Platonic
ideal fails immediately, even for the most simple case involving the
batched matrix multiply. Once again consider the type signature
for the batched matrix multiplication

@ : ∀𝑚,𝑛,𝑑 : N,∀𝑣 : List(N), Tensor(𝑣 ++[𝑚,𝑛]) →
Tensor(𝑣 ++[𝑛,𝑑]) → Tensor(𝑣 ++[𝑚,𝑑])

If we consider the very simple example of multiplying a tensor
with shape [3, 2, 4] by a tensor with shape [3, 4, 5], we ourselves
can immediately see that 𝑣 = [3],𝑚 = 2, 𝑛 = 4, and 𝑑 = 5. However,
this is not an expression that the Lean 4 compiler can pattern match
into. More appropriately, we might say that Lean 4 kernel does
not attempt to solve the unification problem given by [3, 2, 4] =

𝑣 ++[𝑚,𝑛], [3, 4, 5] = 𝑣 ++[𝑛,𝑑] . We might reasonably ask why not.
We can tweak the example slightly. Suppose we are multiplying
a tensor with shape (ℓ ++[𝑎, 𝑏]) ++[2, 4] by a tensor with shape
ℓ ++([𝑎, 𝑏] ++[4, 5]). We might conclude that these can obviously
be multiplied. However, it is not so obvious – if we want to assign
anything to 𝑣 , say ℓ + +[𝑎, 𝑏], we can’t simply normalize the terms
and check if they are equal, because the variable ℓ stops evaluation
from happening. In order to actually determine that they are equal,
we need to know that list concatenation is associative, which the
Lean typechecker does not know.

In order, then, that the Lean 4 typechecker not reject every
single matrix multiplication we write, we need to take the explicit
restrictions out of the type signature. How, then, will we enforce
shape correctness? We require an additional proof term which
guarantees shape correctness, which requires the user (rather, the
prover – it may just as well be a tactic script) to prove the equalities
which the Lean 4 type checker could not. We thus exhibit the
modified type signature1

@ : Tensor(𝑆1) → Tensor(𝑆2) →
(ℎ : ∃,𝑚, 𝑛, 𝑑 : N, 𝑆1 = 𝑙 ++[𝑚,𝑛] ∧ 𝑆2 = 𝑙 ++[𝑚,𝑑]) →
let ⟨𝑙,𝑚, _, 𝑑, _⟩ = ℎ in

Tensor(𝑙 ++[𝑚,𝑑])
Of course, this proof term does not live in the Python code. We
are thus required to show this to our satisfaction ourselves – in
particular, by using tactics. As an interactive theorem prover, Lean
4 generates proofs largely by way of user-supplied tactics, which
provide sound ways of manipulating hypotheses and goal states to
eventually reach a trivial goal. Tactics can also be used to generate
tactics in response to different goals in the environment. These
higher-order tactics (sometimes called tacticals) are the method
most commonly used in dependently typed languages for proof
automation.

A few issues now arise. First, the problem of whether one list is
equal to another without knowing the specific structure of the list
is not necessarily decidable in general (rather, the problem of when
two list-valued expressions with free variables denote the same list).
1Where ∃ below has computational content; i.e. is an intuitionistically provable ∃
(more properly is a dependent sum Σ), so as to legitimize eliminating out of the exists
in the return type.

So we cannot hope to decide the issue – and we cannot hope to
use the resources Lean has for decidability, either. Second, proving
existence claims is hard on two levels. First, it is genuinely hard in
the sense that finding a witness to a proof – rather, synthesizing a
witness to a proof – is very much a contingent problem which is
hard to tackle in generality (and even hard to tackle in specificity,
depending on the property to be proved). Second, it is made even
harder by the fact that Lean 4 proof infrastructure is not designed to
find witnesses for existential proofs. More generally, Lean 4 proof
infrastructure is not designed to unify at all – and this problem is
precisely a unification problem!

We should, however, note that the unification problem is tractable
in a particular case – when the operations are not rank-polymorphic.
An arbitrary list can be decidably matched into an expression with
the form of a concrete list with a predetermined length – for ex-
ample, the proposition ∃𝑎, 𝑏, 𝑐, 𝑥 = [𝑎, 𝑏, 𝑐] is decidable for any
particular 𝑥 . However, rank-polymorphism is important to the ex-
pressivity of modern deep learning code, so it is something we
are hesitant to jettison; jettisoning rank-polymorphism does repre-
sent an alternative approach which hews away from the flavor of
dependently typed specification.

We first attempted to use the primary Lean 4 tactic for proof
search in a proof database, aesop, but before even reaching prob-
lems of scale, we found ourselves frustrated by the same issues as
with the kernel with respect to unification. Even equipped with all
the equalities required to produce a witness, aesop will not produce
a witness. Consider the matrix multiplication of two tensors with
shapes [2, 3] and [3, 4] . To generate a witness satisfying the exis-
tential in the type specification above, all we need is the theorem
that [] ++[2, 3] = [2, 3]. Even explicitly equipped with this theo-
rem, aesop would not solve the goal. More generally, most Lean 4
tactics do not aid in solving existential goals: they are resistant to
instantiating metavariables.

Unable to modify these tactics to instantiate metavariables in
obvious cases, we attempted a different approach – consider a
deep embedding of shape expressions. Up until now, we have been
considering a shallow embedding of shape expressions in our type
signatures where shape expressions are just lists. However, we
wanted to be able to use computation to heuristically solve simple
cases.2 The methodology this points to, however, is fundamentally
a different methodology than that of verification by compilation to
a dependently typed language – we would, in essence, be writing
the kernel of our own dependently typed language, purpose built
to solve shape checking problems.

This concludes our exploration of the struggles faced in verifying
the shape correctness of generated code; it is apt to say that unifi-
cation is the fundamental problem, and that rank-polymorphism
exacerbates the problem of unification exceedingly.

5 Discussion

5.1 Evaluation

Because we remain unable to verify any code which is not annotated
in a way that syntactically matches the structure of the existential
proof, we cannot evaluate our verifier against any of the bugs

2At time of writing, this was our approach; it remains unfinished.

CheckedShapes

described in the literature (e.g. cases evaluated in [4]). We can only
evaluate code generation on these tasks. Being largely focused on
various attempts to a) create interoperability with Python and b)
get a functional verifier, we cannot generate code for every Python
language feature and every PyTorch function as of yet.

For PyTorch functions, it is largely a matter of writing down the
specifications in whatever form should be possible for a verifier
to actually verify. For Python language features, this is largely
just an engineering concern which can to some extent be handled
via monads (try/catch can be handled by monads, decorators can
be handled by monads, while loops don’t require any additional
monadic structure). Notably, we properly compile local mutability,
but not global mutability – we believe this can also be handled
via additional monadic structure. We also have difficulty dealing
with reference semantics (because Lean is naturally immutable),
but because tensor code is generally immutable, this does not strike
us as a problem (and again begs a solution with additional monadic
structure). Both decorators and global mutability take us further
away from the notion of a one-to-one syntactic transformation – a
more significant apparatus is required to effectively translate either.

To summarize, at present, we can generate code with no ten-
sor computational content for the subset of Python previously
described – Python with for loops, assignments, function calls, list
expressions, tensor expressions (zeros, ones, random, randn), some
fundamental tensor operations (matrix multiply, add, transpose)
and local mutability. This code cannot be verified as shape correct
by the Lean 4 kernel unless annotations and type coercions are
added to the subsequently generated Lean 4 code.

5.2 The character of shape checking

We have several times alluded to an argument made by Lagouvar-
dos et al. [5] that shape checking should be regarded as a context-
sensitive whole-program analysis. Though we initially attempted
to challenge their findings, we conclude in support of them in fac-
ing fundamental problems with a type-based approach. Broadly
speaking, the problems we faced when trying to apply a type-based
approach to verifying deep learning code all came from holes in
information. More concretely, the polymorphism required to appro-
priately type PyTorch constructs (rank-polymorphism in particular)
creates metavariables which block evaluation of shape transforma-
tions and require non-automatic rewrites and insights to instantiate.
When Lagouvardos et al. find multiple possible concrete shapes for
a tensor at a call site, rather than abstracting away, they merely
retain both shapes and proceed to verify shape correctness for both.
Fundamentally, Lagouvardos et al. deal with multiplicity through
accumulating helpful information, which a type-based approach
precludes by abstracting away this information.

We further note that the logic programming approach taken by
Lagouvardos et al. really appears to be the right way to solve the
problem. In attempting to instantiate existential variables, we find
ourselves asking relational queries explcitly expressed as such –
what shape expressions C satisfy the relation of elementwise com-
patability between the two shape expression inputs A and B? This
should not be surprising, insofar as the fundamental challenge we
face is unification. We are still open to the possibility of a special-
ized unifier to deal with the theory of shape expressions in the

general first-order form that we find it (not just in the concrete
form given by Lagouvardos). This possibility is a fundamental de-
parture from the notion of analysis by compilation to a dependently
typed language, which takes as its starting position the idea that
the kernel of the dependently typed language will be central to
unification and type-checking. Accordingly, this possibility is not
in any way inherently aided by implementation in a dependently
typed language; in fact, the most natural expression of a specialized
unifier for polymorphic shape types is likely to be found in a logic
program such as Lagouvardos et al. develop.

Ultimately, we conclude just this: the unification problems we
faced were the result of purposely discarding information about the
concrete shape of tensors in an actual execution for the purpose of
a type system paradigm. This should seem to indicate that a type
system paradigm is not the right way to go about shape checking.

6 Conclusion

Deep learning programs are particularly susceptible to shape errors,
which can cause costly runtime failures and hinder model deploy-
ment. In this work, we explore using dependent types to statically
verify the correctness of tensor shapes in PyTorch programs. In the
process, we make a few technical contributions from the perspec-
tive of software development in Lean 4, most notably exploring the
horizon of interoperability between Lean 4 and Python.

We ultimately conclude that while specifying tensor operations
with dependent types is possible and even desirable, compilation to
a dependently typed language to verify tensor operations is a flawed
idea. The notion of compilation to a dependently typed language
suggests that the unifier of a dependently typed language could deal
with the semantic concerns necessary to verify even the simplest
tensor operation. Instead, the problem of verifying dependently
typed tensor operations should be met by a semantic unifier ex-
pressly built to deal with the operations on lists which correspond
to tensor shape operations. This unifier can be constructed in any
language.

However, beyond an alternative approach for verifying depen-
dently typed tensor expressions, we conclude, affirming arguments
made by Lagouvardos et al. in [5], that shape checking of modern
deep learning code should not be understood at all as a modular type
checking problem but rather as a context-sensitive whole-program
analysis. This is because the fundamental tensor operations are
rank-polymorphic, and rank-polymorphism creates a difficult term
synthesis problem which may strain at the bounds of what is possi-
ble with semantic unification. Having concrete data about tensor
shapes at every call site vastly decreases the complexity of the
problem of verifying tensor shape correctness.

We must, in the end, echo the conventional wisdom about depen-
dent types: programming with dependent types is hard. Yet limiting
the scope by focusing on dependently typed DSLs may still prove a
useful technique.

References

[1] Momoko Hattori, Naoki Kobayashi, and Ryosuke Sato. 2023. Gradual Tensor
Shape Checking. arXiv:2203.08402 [cs.PL] https://arxiv.org/abs/2203.08402

[2] Md Johirul Islam, Giang Nguyen, Rangeet Pan, and Hridesh Rajan. 2019. A
comprehensive study on deep learning bug characteristics. In Proceedings of
the 2019 27th ACM Joint Meeting on European Software Engineering Conference
and Symposium on the Foundations of Software Engineering (Tallinn, Estonia)

https://arxiv.org/abs/2203.08402
https://arxiv.org/abs/2203.08402

Mark Pock, Matthew Taruno, and Michael Xu

(ESEC/FSE 2019). Association for Computing Machinery, New York, NY, USA,
510–520. https://doi.org/10.1145/3338906.3338955

[3] Patrick Kidger. 2024. Jaxtyping: Type annotations for JAX, PyTorch and Tensor-
Flow. https://github.com/patrick-kidger/jaxtyping

[4] Jinhan Kim, Seulbae Kim, and Sukyoung Ryu. 2022. PyTea: Practical Tensor
Shape Analysis for Deep Learning. In Proceedings of the 43rd ACM SIGPLAN
International Conference on Programming Language Design and Implementation
(PLDI 2022). ACM, 1013–1027. https://doi.org/10.1145/3510454.3528638

[5] Sifis Lagouvardos, Julian Dolby, Neville Grech, Anastasios Antoniadis, and Yannis
Smaragdakis. 2020. Static Analysis of Shape in TensorFlow Programs. In 34th
European Conference on Object-Oriented Programming (ECOOP 2020) (Leibniz
International Proceedings in Informatics (LIPIcs), Vol. 166). Schloss Dagstuhl–
Leibniz-Zentrum für Informatik, 15:1–15:29. https://doi.org/10.4230/LIPIcs.
ECOOP.2020.15

[6] Mark Mendoza. 2020. PEP 646 – variadic generics. https://peps.python.org/pep-
0646/

[7] John Roesch, Tianqi Chen, Jared Roesch, Ziheng Jiang, Trevor L. M. Howard,
Ziheng Jiang, Thierry Moreau, Luis Ceze, Carlos Guestrin, and Arvind Krishna-
murthy. 2018. Relay: A New IR for Machine Learning Frameworks. In Proceedings

of the 2nd ACM SIGPLAN International Workshop on Machine Learning and Pro-
gramming Languages (MAPL 2018). ACM, 58–68. https://doi.org/10.1145/3211346.
3211348

[8] Alex Rogozhnikov. 2022. Einops: Clear and Reliable Tensor Manipulations with
Einstein-like Notation. In International Conference on Learning Representations.
https://openreview.net/forum?id=oapKSVM2bcj

[9] Sam Stites and Austin Huang. 2018. Hasktorch: A Comprehensive Haskell
Library for Differentiable Functional Programming. In International Conference
on Functional Programming (Numerical Programming in Functional Languages).

[10] L. V. van der Palen. 2024. typeguard: Runtime Type Checking for Python. https:
//github.com/agronholm/typeguard

[11] Sahil Verma and Zhendong Su. 2020. ShapeFlow: Dynamic Shape Interpreter for
TensorFlow. arXiv preprint arXiv:2011.13452 (2020). https://arxiv.org/abs/2011.
13452

[12] Dan Zheng and Koushik Sen. 2024. Dynamic Inference of Likely Symbolic
Tensor Shapes in Python Machine Learning Programs. In Proceedings of the 46th
International Conference on Software Engineering: Software Engineering in Practice
(Lisbon, Portugal) (ICSE-SEIP ’24). Association for Computing Machinery, New
York, NY, USA, 147–156. https://doi.org/10.1145/3639477.3639718

https://doi.org/10.1145/3338906.3338955
https://github.com/patrick-kidger/jaxtyping
https://doi.org/10.1145/3510454.3528638
https://doi.org/10.4230/LIPIcs.ECOOP.2020.15
https://doi.org/10.4230/LIPIcs.ECOOP.2020.15
https://peps.python.org/pep-0646/
https://peps.python.org/pep-0646/
https://doi.org/10.1145/3211346.3211348
https://doi.org/10.1145/3211346.3211348
https://openreview.net/forum?id=oapKSVM2bcj
https://github.com/agronholm/typeguard
https://github.com/agronholm/typeguard
https://arxiv.org/abs/2011.13452
https://arxiv.org/abs/2011.13452
https://doi.org/10.1145/3639477.3639718

	1 Introduction
	1.1 Defining shape error
	1.2 Motivating shape error
	1.3 Contribution

	2 Related work
	2.1 Dynamic approaches
	2.2 Static approaches

	3 Approach
	3.1 Research question
	3.2 Dependent types

	4 Pipeline
	4.1 Parsing and code generation
	4.2 Verification

	5 Discussion
	5.1 Evaluation
	5.2 The character of shape checking

	6 Conclusion
	References

