
A fine-grained runtime CUDA memory profiler for large models
Bo Qiang, Jasper Bucher, Odin Zhang, Yanjing Li
Paul G. Allen School of Computer Science & Engineering

Seattle, Washington, USA
{bqiang,jbutch,odinz,yanjing}@cs.washington.edu

Keywords

Dynamic Testing, Memory Profiling, Machine Learning, Graphics
Processing Unit

1 Introduction

Machine learning models have the potential to transform scientific
endeavors by uncovering insights from extensive datasets that were
previously inaccessible. [1] According to the scaling law of machine
learning [2], larger models training on larger datasets will always
gain much better performance.

In large-scale projects, computational resources, especially GPU
memory are typically pushed to their limits. However, out-of-memory
(OOM) errors can still arise due to various factors, including GPU
memory leaks, variations in floating-point precision, differences
in forward-pass behavior with respect to tokenization, or dynami-
cally growing input sizes during autoregressive inference. These
errors are particularly challenging to diagnose because the exact
line at which a program fails is not necessarily the primary contrib-
utor to excessive memory consumption. Throughout this paper, all
subsequent references to ‘OOM’ will specifically pertain to GPU
out-of-memory situations. As a result, identifying problematic in-
puts during both training and inference is often a labor-intensive
process, typically involving exhaustive ablation studies or manu-
ally excluding anomalous samples one by one. These approaches
are neither scalable nor effective in helping ML practitioners gain
deeper insights into their model architectures.

Efficiently profiling GPU memory usage at a fine-grained level
and attributing it to specific code blocks or neural network lay-
ers is therefore crucial for optimizing deep learning workflows.
However, existing tools either offer CUDA-level logging that lacks
detailed, user-friendly insights into memory consumption for spe-
cific Python code segments and variables, or function on PyTorch
tensors, making it difficult to analyze model parameters. None of
the previous works are widely used by ML developers for debug-
ging out-of-memory errors and optimizing resource allocation in
large-scale models. We introduce FineProfiler , a Python based
tool that generates fine-grained GPU memory usage profiles for
PyTorch-based models, offering precise tracking of memory alloca-
tion and usage across different operations. In this paper, we develop
a lightweight CUDA memory profiler for tracking the consumption

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ACM 2025, Seattle, WA
© 2018 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-XXXX-X/2018/06
https://doi.org/XXXXXXX.XXXXXXX

of PyTorch-based modules. Our approach dynamically tests the
memory trace of large models and we demonstrate its applicability
to architectures of varying levels of complexity. We perform ex-
periments and analyses to demonstrate both the efficiency of our
system and the user-friendly interface designed for developers.

In order to further evaluate FineProfiler , we will present a
representative case study focusing on one of the leading foundation
models in the field of ‘AI for Science’, AlphaFold 3. The occurrence
of out-of-memory (OOM) errors in this model is influenced by
several factors related to the hierarchical structured inputs. No-
tably, when processing inputs that include non-standard residue
types, the dimensionality of the input vectors can increase sig-
nificantly. Additionally, we have observed memory leaks when
certain modules are invoked exclusively for specific input data. Our
approach clarifies which architectural components can be down-
sized or pruned altogether, based on an assessed trade-off between
memory usage and performance. This profiler helps identify that
a significant amount of memory is consumed by the trunk of the
network. By reducing the size of this part of the architecture, we
find reduced error rates on spurious samples as well as improved
parameter efficiency. We provide our open-source implementation
of the profiler at github.com/YanjingLiLi/Torch_mempro.

2 Related work

To profile CUDA memory usage in machine learning models, de-
velopers have created multiple tools. Below we summarize existing
software capable of tracing memory consumption.

NVIDIA Nsight Systems. [3] This is a performance analysis tool
that is seamlessly integrated into the CUDA developer tool suite.
Nsight Systems provides developers with time and memory con-
sumption for every CUDA-level function call, e.g., convolution net-
work forwards. A summary of I/O, CPU, GPU memory, and GPU
utilization is presented in a visualization panel. However, most
ML researchers are now working with ML frameworks written
in Python, where multiple neural network layers utilize the same
CUDA API. Therefore, error tracing is hard for Nsight Systems, be-
cause we cannot interpret the location of bugs from a CUDA-level
error message which could be raised from multiple places in the
neural network. In contrast, our method solves this by building
the profiler purely on Python and integrating it into a popular ML
framework, Pytorch.

PyTorch’s Built-in Profiler. [5] PyTorch is currently the most pop-
ular machine learning framework, according to a survey conducted
by Stack Overflow[4]. A profiler operates in the background to track
memory usage by calling the function torch.profiler.profile().
Compared to Nsight Systems, this profiler can save the memory
occupation time curve as a snapshot, allowing for visualization
of memory usage based on specific memory addresses. However,

https://doi.org/XXXXXXX.XXXXXXX
https://github.com/YanjingLiLi/Torch_mempro

ACM 2025, June 03–05, 2018, Seattle, WA Bo Qiang, Jasper Bucher, Odin Zhang, Yanjing Li

establishing connections between variables that encompass mul-
tiple vectors and gradients distributed across various GPUs poses
a significant challenge. In contrast to this profiler, our method
tracks variable memory by segmenting the code into hierarchi-
cal graphs that represent the architecture of the neural network.
This approach can facilitate direct analysis for machine learning
researchers. Methodologically, our method can be viewed as a ma-
chine learning objective layer built upon the built-in profiler in
PyTorch.

Third-party package pytorch_memlab. [6] This is a GitHub repos-
itory with over 1k stars, developed by Kaiyu Shi from Shanghai
Jiaotong University. It provides line-by-line analysis for the pytorch
nn.Module class, which are blocks of neural networks including
their parameters and other run-time variables. This profiler mea-
sures variable memory usage by logging the data type and shape
of every intermediate tensor and its gradients. However, two sig-
nificant challenges arise. First, calculating the memory usage of
torch.tensor only provides a lower bound for CUDA memory us-
age, as it overlooks critical components such as optimizer states
and model parameters. Additionally, because this profiler is run on
CPUs, it requires frequently transferring tensors back and forth
between the CPU and GPU, which negatively impacts efficiency. To
overcome this challenge, instead of manually calculating every ten-
sor shape, we will keep variables on the GPU and log the memory
allocation using torch-based API.

Weights and Biases (WandB). [7]WandB is a popular, lightweight
logging tool for AI developers, primarily designed for the conve-
nient tracking of training metrics. It is well-known for its ease of
implementation and its user-friendly web-based API. The frame-
work includes various GPU tracing utilities that monitor aspects
such as process time spent accessing memory, as well as GPU al-
location and utilization. While WandB can be useful for detecting
potential memory leaks, its API does not provide the capability
to diagnose specific neural modules that may be contributing to
excessive memory consumption.

In conclusion, although various tools have been developed, there
is currently no profiler that can be directly applied to large ML
models without extensive log analysis.

3 Methodology

3.1 Overview of FineProfiler

In this section, we introduce an overview of our fine-grained CUDA
memory profiler (FineProfiler). Currently, neural networks writ-
ten in Python are coded as follows:� �

1 class SimpleNN (nn . Module) :
2 def __init__ (self) :
3 super (SimpleNN , self) . __init__ ()
4 self . fc1 = nn . Linear (2 , 1)
5
6 def forward (self , x) :
7 x = torch . sigmoid (self . fc1 (x))
8 return x� �

Machine learning researchers will define more complex model
architectures within the nn.Module. Our framework primarily con-
sists of two components: a json file generator that log memory
usage and a user-friendly visualizer that outputs HTML files. When
users intend to track memory usage for the forward path of the

model, they only need to wrap the forward call of the model with
a Python decorator memory_tracker. In Python, a decorator is a
function that modifies the behavior of another function or method
without changing its code. It is commonly used for logging, profil-
ing, authentication, and performance monitoring. In our context, a
decorator is designed to automatically track CUDA memory usage
during model execution in PyTorch. It wraps a function (typically
the model’s forward pass for inference mode and backward pass
for train mode) and logs GPU memory allocation and deallocation
at both the code line level and variable level.� �

1 # Apply memory tracing on model inference
2 @memory_tracker #wrap with the decorator
3 def inference_model (x) :
4 #moving model into GPU
5 model = SimpleNN () . to ("cuda")
6 output = model (x)
7 return output
8
9 # Apply memory tracing on model training
10 @memory_tracker #wrap with the decorator
11 def train_model (output , label , optimizer) :
12 #moving model into GPU
13 model = SimpleNN () . to ("cuda")
14 output = model (x)
15 loss = loss_func (output , label)
16 loss . backward ()
17 optimizer . step ()� �

Users simply need to apply the decorator to their model and
train it iteratively, with each iteration comprising a forward and
backward pass. A raw JSON file will be generated, capturing de-
tailed CUDA memory logs for every line of code. A parser then
processes this JSON file, filtering out low-level details unrelated
to debugging. The refined JSON is subsequently mapped to the
model’s hierarchical structure, constructed using our novel model
architecture builder. Ultimately, a structured JSON output file is
produced, detailing memory usage per line of code and per vari-
able. Additionally, an HTML visualization is generated, offering an
intuitive representation of memory consumption across different
code segments. The workflow is visualized in Figure 1.

Our main contributions are: (1) Providing an unbiased CUDA
memory profiler gives full analysis from both line-of-code level and
variable level, which the former is not supported by any previous
works; (2) We enable memory tracking for both the forward pass
and gradient backpropagation, while the latter is not supported by
MemLab. (3) We present memory profiling results in both JSON
and an interactive HTML page.

3.2 Design and Implementation

3.2.1 Per-variablememory track. Thememory of variables is tracked
by iterating through all named parameters in a PyTorch model for
each line:� �

1 mem_bytes = param . element_size () ∗ param . nelement ()
2 print (f"{name}: {mem_bytes / 1024**2:.3f} MB")� �

The memory usage of each parameter is computed by multiply-
ing its element size (the number of bytes each element occupies)
with the total number of elements (obtained using nelement()).

This approach provides insights into the lower-bound memory
consumption of each tensor involved in the current line-of-code,
which is crucial for optimizing memory usage, particularly when
training large models on GPUs.

A fine-grained runtime CUDA memory profiler for large models ACM 2025, June 03–05, 2018, Seattle, WA

Figure 1: Proposed Workflow of FineProfiler: Gray blocks

represent components executed or generated by our method,

while the white block represents the user’s model. Users can

wrap thememory tracker directly on their customizedmodel.

During execution, the memory tracker monitors memory us-

age for each line of code and tensor operation, summarizing

the results in a JSON file and an HTML page as output.

3.2.2 Per-line-of-code memory track.

Forward Pytorch decorator. The decorator used as a memory
tracker is the core component of FineProfiler , represented in
Figure 1. It is responsible for tracking CUDA memory consumption.
Unlike existing tools such as PyTorch-MemLab, which focuses only
on variable usage, or Nsight System only on overall usage, the
forward pytorch decorator logs memory allocation and deallocation
for every line of python code. This dual-level approach allows users
to diagnose CUDA OOM errors more precisely by distinguishing
whether memory spikes are caused by large input data, memory-
intensive operations, or inefficient tensor management.

The Python decorator wraps the model’s forward pass and cap-
tures memory usage while injecting dynamic hooks into the exe-
cution flow. The decorator intercepts function calls, allowing it to
track memory usage without modifying the original code. Dynamic
hooks are injected both at the Python execution level and at the
PyTorch tensor level. At the Python execution level, our decora-
tor hooks into each executed line of code using sys.settrace(),
enabling it to track per-line memory usage. At the PyTorch ten-
sor level, it hooks into PyTorch’s autograd system by leveraging
sys.settrace(), which monitors tensor operations within the
neural network layers.

To capture memory usage at the Python execution level, our dec-
orator dynamically injects hooks using sys.settrace(), allowing
it to intercept execution at each line and extract file names and line
numbers from frame.f_code.co_filename and frame.f_lineno.
GPU memory usage is recorded before and after execution using
torch.cuda.memory_allocated() and
torch.cuda. memory_reserved(). This enables FineProfiler to
log per-line memory changes, detect sudden spikes, and identify
inefficient memory usage patterns that may indicate memory leaks.
These delta memory usages are linked with specific lines of code
and variables. By capturing execution at the Python level, users can
pinpoint the exact line of code responsible for excessive memory
consumption.

For variable-level tracking, the system captures memory alloca-
tion and deallocation events associated with tensors. Each tensor
is uniquely identified using id(tensor), and its memory footprint is
computed through attributes such as tensor.element_size() and

tensor.nelement(). To monitor tensor transformations and track
memory usage across different operations, the system employs
PyTorch hooks, including register_forward_hook, to attribute
memory usage to specific layers in a neural network.

The decorator plays a key role in this process by automatically
wrapping user-defined models and injecting the necessary instru-
mentation code. Instead of defining new custom hooks, the dec-
orator captures function calls, performs additional tracking logic,
and then forwards execution to the original module. This approach
allows the system to dynamically attach hooks at runtime with-
out modifying the underlying model code. The collected data is
stored in structured logs, enabling an in-depth analysis of how each
variable contributes to overall memory consumption.

Backward Pytorch decorator. In machine learning, neural net-
works are usually trained by a forward pass to get the loss and
then backpropagate the gradient through model layers to update
all parameters. Therefore, tracking the CUDA memory usage for
backpropagation is also important to detect errors in code.

In our implementation, we monitor CUDA memory usage by
assessing memory consumption before and after executing the
module, paralleling the method used during the forward pass. How-
ever, unlike the forward decorator, it is impossible to analyze the
backward pass line by line due to its operation on the underlying
computational graph instead of explicitly defining all execution.
To overcome this, we employ the register_full_backward_hook
for each submodule of the complete network, allowing us to capture
and log memory usage across all modules. This approach enables
us to generate comprehensive logs for each submodule and neural
layer, facilitating an in-depth analysis of memory consumption
during the backward pass.

3.2.3 Outputs processing.

Log parser. Both the forward decorator and the backward decora-
tor run recursively to capture the fine-grained details of the neural
networks. This implies that for a nn.Linear() layer, the logging
operations are decomposed into weight matrix multiplication and
bias calculation, resulting in redundancy for debugging purposes.

To address this issue, we implement a log parser that processes
the JSON file by removing all low-level call logs. A Python script au-
tomatically identifies directory paths containing third-party PyTorch-
level packages and removes any corresponding logs from the raw
JSON output while preserving the correct hierarchical structure.
After this pruning process, the refined JSON file is passed to the
builder for further processing.

Model architecture builder. The key challenge in using other
CUDA memory tracking tools is how to interpret the logs that
could be useful for real-life machine learning debugging. Nowa-
days, neural networks are getting bigger and bigger, both on the
scale of the number of parameters and the complexity of these
designed architectures. Rather than analyzing code line by line,
Python programs are structured as a hierarchical tree within the
minds of machine learning engineers.

In order to make the logs interpretable, we implement a forward
and backward decorator, as well as a model architecture builder
that parses any PyTorch-based code into a tree-based structure.
This structure recursively collects all computations in the forward

ACM 2025, June 03–05, 2018, Seattle, WA Bo Qiang, Jasper Bucher, Odin Zhang, Yanjing Li

pass of every nn.Module. Each node in the tree represents a specific
computation, and we enhance this representation by adding the
corresponding file name and line numbers as metadata for each
child node. This comprehensive logging mechanism facilitates bet-
ter debugging and understanding of the model’s architecture and
its execution flow during training and inference.

3.2.4 Visualization. The visualization component aims to offer an
efficient, fine-grained, and user-readable solution for deep learn-
ing users working with large-scale models. By integrating detailed
memory tracking at both the code and variable levels, detailed out-
put generation, and multi-GPU awareness, this tool will address
critical challenges in memory optimization and help developers
more effectively diagnose and mitigate out-of-memory errors. Our
tool will generate structured output in JSON format, capturing
memory usage statistics for each code block and variable. To be
specific, JSON output takes the hierarchical form of the neural net-
work where each key represents a chunk of code that is sequentially
executed during the forward pass. In the JSON output for the chunk
of code, memory usage, and variables are logged. This JSON out-
put will enable easy integration into existing debugging pipelines,
allowing developers to systematically analyze memory trends and
identify bottlenecks.

Additionally, an HTML page will be generated where each vari-
able / layer is represented as a button. When the user clicks on a
button, it will display the memory usage information for each line
that involves the selected item.

4 Experiment

In the experimental evaluation section, we first conducted a fun-
damental functional test on a toy model to determine whether our
approach could deliver line-by-line CUDA memory logging and
organize this data module by module. Next, we performed experi-
ments to assess the performance of our system, FineProfiler , and
compared it with other well-known tools. Finally, we applied our
method to real-world debugging scenarios in AlphaFold 3.

4.1 Functional test

4.1.1 Line-Specific Detection. We first examine the profiler’s ca-
pacity for line-specific memory attribution. An MLP with multiple
layers is constructed, and its hidden dimensions are progressively
increased. During training, the profiler logs memory allocation,
linking each allocation to the exact line of code responsible (e.g.,
weight initialization or forward-pass operations). Through this ex-
periment, we verify whether the profiler pinpoints the specific lines
causing memory surges, enabling developers to optimize particular
code segments more efficiently.
Refined Line-specific tracing
{

"file": "model/MLP.py",
"line": 25,
"function": "forward",
"delta_allocated_bytes": 4000256,
"delta_reserved_bytes": 0,
"delta_allocated_gb": 0.0037255287170410156,
"delta_reserved_gb": 0.0

}

...

4.1.2 Module-Specific Detection. Next, we investigatemodule-specific
memory tracking using the same MLP setup. Instead of attributing
allocations to individual lines, the profiler aggregatesmemory usage
at the module level, providing a consolidated view of each layer’s
resource consumption. This module-level analysis highlights which
parts of the network (e.g., certain dense layers) demand the most
GPU memory. By identifying these high-consumption modules,
developers can strategically apply optimization techniques (e.g.,
reduced hidden dimension size or selective gradient checkpointing)
where they will have the greatest impact.

This module-level logging is enabled not only for forward calls of
the neural network but also for tracking CUDA memory consump-
tion during the backpropagation of gradients, which is essential for
parameter optimization. To our knowledge, FineProfiler is the
first tool that offers fine-grained logging for model training.

{
"name": "Main_model",
"children": [

{
"name": "layer1",
"children": [

{
"name": "linear",
"children": [],
"delta_allocated_gb": 0.01,
"delta_reserved_gb": 0.02

},
{

"name": "relu",
"children": [],
"delta_allocated_gb": 0.01,
"delta_reserved_gb": 0.0

}
]

},
{

"name": "layer2",
"children": [

{
"name": "linear",
"children": [],
"delta_allocated_gb": 0.01,
"delta_reserved_gb": 0.02

},
{

"name": "relu",
"children": [],
"delta_allocated_gb": 0.0,
"delta_reserved_gb": 0.0

}
]

},
{

"name": "fc",
"children": [],

A fine-grained runtime CUDA memory profiler for large models ACM 2025, June 03–05, 2018, Seattle, WA

"delta_allocated_gb": 0.0,
"delta_reserved_gb": 0.0

}
]

}

4.1.3 Actionable Suggestions. The practical advantage of our pro-
filer is its ability to generate actionable suggestions. Specifically,
we leverage the profiler logs to compute the peak GPU memory
usage during the entire backward pass of the network, then convert
that value in relation to the current batch size. By dividing the total
available GPU memory by the per-sample memory footprint, we
obtain an estimated maximum feasible batch size.

>> python s c r i p t / mlp_exper iment . py
Maximum ba t ch s i z e : 207240
>> python s c r i p t / t r an s f o rme r_ expe r imen t . py
Maximum ba t ch s i z e : 467

As shown above, running our profiler on a simple MLP archi-
tecture yields a maximum batch size of 207,240, while a more
complex Transformer model caps at a feasible batch size of 467.
This estimation addresses a common challenge in deep learning
development: practitioners typically discover the maximum batch
size through a trial-and-error process (e.g., testing batch sizes 2, 4,
8, etc.) until an out-of-memory (OOM) error arises. Our approach,
however, streamlines the process by systematically analyzing the
memory profiling logs to pinpoint exactly how much memory is
consumed at peak allocation. Not only does this save considerable
time, but it also ensures that GPU resources are utilized as effi-
ciently as possible—maximizing batch sizes without risking OOM
errors.

Figure 2: UI of Pytorch built-in profiler

4.2 UI Analysis

In this section, we provide an analysis of the current popular CUDA
memory tools and discuss the advantages of our visualization web-
page.

As shown in Figure 3, the built-in PyTorch profiler provides a
plot of CUDA memory usage over time. Memory allocations are
logged and color-coded according to the corresponding CUDA calls.
This feature is particularly useful for identifying memory leaks and
investigating which iterations cause abnormal memory behavior.
However, this visualization is hard to interpret for Python debug-
ging and model architecture analysis, especially for large models
or huge batch sizes that are non-trivial to fit into a single GPU
for one forward pass. Nsight system provides more fine-grained

Figure 3: UI of NVIDIA Nsight system

Figure 4: UI of our FineProfiler

low-level logging as in Figure 3. Besides CUDA memory logging, it
also gives information about CPU usage and CPU-GPU information
exchanges.

A visualization of the demo is presented in Figure 4. In addition
to logging basic information about peak memory usage during the
entire training iteration and inference pipeline, the webpage fea-
tures a detailed line-by-line delta memory visualization. To identify
abnormal memory behavior or bottlenecks, users can first exam-
ine peak CUDA memory by reviewing the JSON output from our
memory summary, which is organized by module. They can then
click on the corresponding code lines on the webpage to examine
the tensor memory size and additional memory allocations at each
computational step.

ACM 2025, June 03–05, 2018, Seattle, WA Bo Qiang, Jasper Bucher, Odin Zhang, Yanjing Li

Figure 5: Runtime of different cuda profiler for MLP / Transformer experiment

4.3 Experiment on runtime

While all profilers can offer valuable insights to aid ML developers
in debugging their models, these methods may also introduce addi-
tional runtime overhead that could adversely affect their practical
applications. Therefore, in this section, we benchmark the run-
ning time for well-known CUDA memory profilers. Experiments
are conducted on MLPs of different numbers of layers and vanilla
transformers of different sizes of hidden dimensions. Runtimes are
evaluated for both inference and training processes. During infer-
ence, the automatic gradient calculation is disabled for PyTorch
models. For each training iteration, randomly generated data is in-
put for the forward pass to compute the loss, followed by one step
of backpropagation and optimization. We run 100 iterations for all
MLP experiments and 10 iterations for all Transformer experiments.
The results are illustrated in Figure. 5. ’control’ stands for the blank
experiments without any profiling.

In inference mode, both MemLab and the built-in PyTorch pro-
filer introduce significantly more overhead in running time com-
pared to the Nsight Systems and our method. However, this over-
head does not scale with the number of layers or the size of the
hidden dimensions. For larger models, the additional running time
incurred by the built-in PyTorch profiler and the blank experiment
remains consistent. We conclude that this overhead is primarily
due to the process of saving snapshots at the beginning and end
of the program rather than from injecting additional logging into
the model itself. However, MemLab still significantly slows down

model inference. On the other hand, our method incurs only a mar-
ginal additional runtime compared to the native NVIDIA profiler,
demonstrating its efficiency.

For model training, it is clear that our approach, denoted as
FineProfiler , may introduce some latency in the backpropagation
gradient computation due to the recursive logging mechanism. The
upper-right figure illustrates that the running time scales linearly
with the number of layers in the neural network. However, as
demonstrated in our Transformer experiments, the running time
of our method does not exhibit scaling with the size of the hidden
dimensions. These findings indicate that while our method may
hinder training efficiency—especially when developers partition
neural networks into multiple nested modules—it remains unique in
its capability to offer fine-grained logging during training. This level
of detailed logging is crucial for optimizing model performance and
debugging, setting our method apart from others in the field.

4.4 Peak memory detection

It is essential for the profiler to accurately identify memory bottle-
necks in the code. Consequently, we analyze the output logs from
Memlab and the built-in profiler of PyTorch, comparing their peak
memory usage with that of our method. We run all methods on a
12-layer transformer encoder-decoder network and the results are
shown in Figure. 6. It is obvious that FineProfiler and the built-in
profiler of PyTorch give similar results while Memlab underesti-
mate the memory consumption of the transformer model. This
is because Memlab only tracks the memory for training through

A fine-grained runtime CUDA memory profiler for large models ACM 2025, June 03–05, 2018, Seattle, WA

Figure 6: Peak memory profiled by different methods for a

12-layer transformer

tensor sizes and tensor gradients. The gradient stored in the param-
eters and optimizers takes around 0.05GB in the experiment which
only FineProfiler and the built-in profiler of PyTorch are able to
detect.

4.5 Application to development of the

AlphaFold3 architecture

In this evaluation, we aim to demonstrate that our profiler can be
applied to large, complex models, and serve to aid developers on
complex real-world tasks. In particular, we are interested in an ma-
chine learning architecture design problem related to AlphaFold3.
AlphaFold3 is a 300M parameter model trained to predict the struc-
ture of a protein given its amino acid sequence. The architecture of
AF3 is complex, but can be viewed as containing two major compo-
nents: (i) the trunk which processes the amino acid sequence, and
(ii) the diffusion module which generates the full structure given the
outputs of the trunk. The trunk serves to steer the final generation,
similar to how a prompt to a large language model guides how it
generates the answer.

For our application, we want to use a model that has already
learned some things and apply it to a new job: creating proteins from
scratch, without needing any initial sequence input or guidance.
Normally, this involves the trunk, which helps in generating initial
guesses. However, for this task, the trunk isn’t needed, and it’s
actually holding back the model’s performance because it’s taking
up resources that could be used more effectively.

We aim to use FineProfiler to understand the effect of removing
the trunk. And to use our program to understand how relinquished
resources can be reallocated to accelerate training and thereby
boost performance.

Using the FineProfiler , we can provide a rough measure of
architectural complexity. Upon removal of the trunk component,
we found a nearly ∼ 4-fold decrease in the number of submodules
called on the forward pass (3393 in the base model versus 900 in
the variant without the trunk–the ’A14’ model). This significant
reduction in the architectural complexity upon removing the trunk
suggests the model would be substantially simpler and therefore

faster. Interestingly, however, we found that our initial implemen-
tation did not significantly accelerate training.

We investigate in Figure 7 the causes of this effect by profiling
the memory consumption of both models during the backward-
pass. We see that, where a significant proportion of memory was
allocated to the trunk (top of Figure 7), there is now still a large
activation outside of the diffusion module.

Trunk D.M.

D.M.Replaced trunk

Figure 7: Memory profiles for AF3 architecture (with trunk,

top) and ’A14’ (AF3 without the trunk, bottom).

To investigate the memory effects of the replaced trunk modules,
we carry out an ablation of the memory consumption associated
with the replaced trunk components in Figure 8. We see that during
the backward pass, the memory consumption of the A14 (initial
implementation) is comparable to that of the original AF3, providing
a potential explanation as to why the training time is approximately
the same after removing the trunk. Finally, we see that the forward
pass is largely consumed by the trunk components, suggesting an
alternative module is likely most appropriate for the A14 variant
of AF3.

We found after training the new variant with the removed ad-
ditional components, that training time was reduced by 35%. This
efficiency increase is attributable to the decreased memory alloca-
tion during the backward pass, and was previously undetectable
using only the forward pass (see figure 8). Other conventional
methods of memory tracing must rely on the forward pass only
and therefore could not be used to guide development in the same
manner.

Overall, this shows our profiler can be used to aid in real-world
problems. We note there are additional effects other than the ones
described here which likely increase memory consumption of the
ablated model associated with.

ACM 2025, June 03–05, 2018, Seattle, WA Bo Qiang, Jasper Bucher, Odin Zhang, Yanjing Li

Figure 8: Memory consumption by model variants.

5 Discussion

The increasing emphasis on inference-time scalability has high-
lighted the importance of ensuring model robustness not only dur-
ing training but also throughout the inference process. In this work,
we introduced FineProfiler, a lightweight, Python-based CUDA
memory profiler for large-scale PyTorch models. Unlike existing
profilers that operate at the CUDA or framework level, FineProfiler
offers fine-grained insights at both the code-line and variable level
using Python decorators and dynamic tracing mechanisms. Our
tool not only facilitates accurate memory attribution during both
the forward and backward passes, but also produces structured,
interpretable outputs in both JSON and HTML formats. Through
comprehensive experiments and real-world applications such as
AlphaFold3, we demonstrated that FineProfiler can effectively de-
tect memory bottlenecks, guide architectural decisions, and suggest
optimization strategies—ultimately improving model reliability and
resource efficiency. On this task, we showed that our framework of-
fers insights by monitoring memory consumption of the backward
pass which are not available from the existing literature. By offering
an intuitive debugging interface and maintaining minimal runtime
overhead, FineProfiler addresses a critical gap in the deep learning
development ecosystem and is a promising tool for optimizing deep
learning workflows at scale.

Acknowledgments

We thank the members of the Institute for Protein Design; Rohith
Krishna, Nathaniel Corley and Woody Ahern for their insightful
thoughts during the planning of this project.

References

[1] Michael I Jordan and TomMMitchell. 2015. Machine learning: Trends, perspectives,
and prospects. Science 349, 6245 (2015), 255–260.

[2] Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B Brown, Benjamin Chess,
Rewon Child, Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. 2020.
Scaling laws for neural language models. arXiv preprint arXiv:2001.08361 (2020).

[3] NVIDIA Corporation. [n. d.]. NVIDIA Nsight Systems. https://developer.nvidia.
com/nsight-systems. Accessed: 2025-02-05.

[4] Stack Overflow. 2024. Stack Overflow Developer Survey 2024: Technology. https:
//survey.stackoverflow.co/2024/technology Accessed: 2024-10-02.

[5] PyTorch. 2023. PyTorch Profiler Recipe. https://pytorch.org/tutorials/recipes/
recipes/profiler_recipe.html. Accessed: 2025-02-05.

[6] Stonesjtu. 2025. pytorch_memlab. https://github.com/Stonesjtu/pytorch_memlab
Accessed: [Insert Date Here].

[7] Weights and Biases. 2025. Weights and Biases. https://wandb.ai/site/. Accessed:
2023-10-05.

A Methods

(Appendix)

Received 24 January 2024

https://developer.nvidia.com/nsight-systems
https://developer.nvidia.com/nsight-systems
https://survey.stackoverflow.co/2024/technology
https://survey.stackoverflow.co/2024/technology
https://pytorch.org/tutorials/recipes/recipes/profiler_recipe.html
https://pytorch.org/tutorials/recipes/recipes/profiler_recipe.html
https://github.com/Stonesjtu/pytorch_memlab
https://wandb.ai/site/

	1 Introduction
	2 Related work
	3 Methodology
	3.1 Overview of FineProfiler
	3.2 Design and Implementation

	4 Experiment
	4.1 Functional test
	4.2 UI Analysis
	4.3 Experiment on runtime
	4.4 Peak memory detection
	4.5 Application to development of the AlphaFold3 architecture

	5 Discussion
	Acknowledgments
	References
	A Methods

