CSE 503

Software Engineering

Software Testing

Today

e Course projects

‘o Introduction to software testing

o Blackbox vs. whitebox testing
o Unit testing (vs. integration vs. system testing)
o Test adequacy: code coverage

m Statement coverage

m Decision coverage (Branch coverage)

m Condition coverage

m Path coverage

k. Discussion of DART: Directed Automated Random Testingj

Software Testing 101

Software testing vs. software debugging

O 00 N OO Uui AW N BB

[=
w N R e

double avg(double[] nums) {
int n = nums.length;
double sum = ©;

int 1 = 0;

while (i<n) {
sum = sum + nums[i];
i=1+ 1;

}

double avg = sum * n;
return avg;

}

Testing: is there a bug?

@Test
public void testAvg () {
double nums =
new double[]{1.0, 2.0, 3.0});
double actual = Math.avg(nums);
double expected = 2.0;
assertEquals (expected, actual, EPS) ;

Software testing vs. software debugging

Testing: is there a bug?

1 double avg(double[] nums) {

2 int n = nums.length; @Test

3 double sum = O; public void testAv gﬁ_ {

4 double nums 3,

s 1nt 1 = 0; PA2.0, 3.0});
6 while (i<n) { double; ot avg(nums),

7 sum = sum + nums[i]; double 15@“_ =

8 i=1+1; assertEquals expected actual,EPS) ;
9

})
testAvg failed: 2.0 != 18.0

=
(W)

11 double avg = sum * n;

12 return avg;
M

Software testing vs. software debugging

1 double avg(double[] nums) {
2 int n = nums.length;

3 double sum = ©;

4

s 1nt 1 = 0;

6 while (i<n) {

7 sum = sum + nums[i];

8 i=1+ 1;

o })
10

118.double avg = sum * n;

12

13 }

return avg;

testAvg failed: 2.0 !

Testing: is there a bug?

@Test
public void testAvg()_{

"

double nums

Pﬁﬁ’hk

double\ u
double @L

assertEquals expected actual,EPS);

(—’

A12 0, 3.0});
£ avg(nums),

18.0

ebugging: where is the bug?

how to fix the bug?

Two strategies: black box vs. white box

Black box testing
e The system is a black box (can’t see inside).
e No knowledge about the internals of a system.

e Create tests solely based on the specification (e.g.,
input/output behavior).

White box testing
e Knowledge about the internals of a system.
e C(reate tests based on these internals (e.g., exercise a
particular part or path of the system).

Unit testing, integration testing, system testing
Unit testing
e Does each unit work as specified?

Integration testing
e Do the units work when put together?

System testing
e Does the system work as a whole?

Unit testing

e A unit is the smallest testable part of the software system
(e.g., a method in a Java class).

e Goal: Verify that each software unit performs as specified.

e Focus:
o Individual units (not the interactions between units).

o Usually input/output relationships.

Test effectiveness

Software testing can show the presence of defects,
but never show their absence! (Edsger W. Dijkstra)

e A good test is one that fails because of a defect.

How do we come up with good tests?

Test effectiveness

Ratio of detected defects is the best effectiveness metric!

Problem
e The set of defects is unknowable.

Solution
e Use a proxy metric (e.g., code coverage or mutation analysis).

Structural code coverage: example

Average of the absolute values of an array of doubles

public double avgAbs(double ... a) {

// We expect the array to be non-null and non-empty
if (a == null || a.length == @) {
throw new IllegalArgumentException("Array a must not be null or empty!");

}

double sum = 0;

for (int i=0; i<a.length; ++i) {
double num = a[i];
if (num < @) {

sum -= num;
} else {
sum += num;

}
}

return sum/a.length;

\}\

What's the CFG for this method?

Structural code coverage: example

Average of the absolute values of an array of doubles

public double avgAbs(double ... a) {

// We expect the array to be non-null and non-empty
if (a == null || a.length == @) {
throw new IllegalArgumentException("Array a must not be null or empty!");

}

double sum = 0;

for (int i=0; i<a.length; ++i) {
double num = a[i];
if (num < @) {

throw new lllegalArgumentException(Exceptional
“Array a must not be null or empty!”) exit

return sum/a.length } >@

sum -= num;
} else {
sum += num; o

}
}

sum += num

return sum/a.length;

\}\

Statement coverage

e Every statement in the program must be
executed at least once.

e Given the control-flow graph (CFG), this is
equivalent to node coverage.

Statement coverage

a==null ||
a.length==(

throw new lllegalArgumentException(
“Array a must not be null or empty!”)

Exceptional
exit
return sum/a.length m

sum += num

true

sum -= num

v

Condition coverage vs. decision coverage

Terminology

e Condition: a boolean expression that cannot be decomposed into
simpler boolean expressions.

e Decision: a boolean expression that is composed of conditions, using
0 or more logical connectors (a decision with 0 logical connectors is a
condition).

e Example:if(a&b){...}
m aand b are conditions.
m [he boolean expression a & b is a decision.

Decision coverage (aka branch coverage)

e Every decision in the program must take on
all possible outcomes (true/false) at least once

e Given the CFG, this is equivalent to edge coverage

e Example: (a>0 & b>0)
o a=1, b=1
o a=0, b=0

Decision coverage (aka branch coverage)

throw new lllegalArgumentException(Exceptional
“Array a must not be null or empty!”) exit
return sum/a.length

sum += num

true

sum -= num

v

Condition coverage

e Every condition in the program must take on
all possible outcomes (true/false) at least once
e Example: (a>0 & b>0)

o a=1, b=1
o a=0, b=0

Condition coverage

throw new lllegalArgumentException(
“Array a must not be null or empty!”)

Exceptional
exit
return sum/a.length m

sum += num

Structural code coverage: subsumption

Given two coverage criteria A and B,
A subsumes B iff satisfying A implies satisfying B

e Subsumption relationships:

o Does statement coverage
subsume decision coverage?

throw new lllegalArgumentException(Exceptional
“Array a must not be null or empty!”) exit
return sum/a.length

sum += num

o Does decision coverage
subsume statement coverage?

o Does decision coverage
subsume condition coverage?

o Does condition coverage
subsume decision coverage?

Decision coverage vs. condition coverage

4 possible tests for the decision a | b:

1. a=0,b=0
a b alb a b alb
2. a=0,b=1
3 a=1b=0 0 O 0 0O O 0
4. a=1,b= 0o 1 1 0o 1 1
1 0 1 1 0 1
1 1 1 1 1 1
Satisfies condition coverage Does not satisfy condition
but not decision coverage coverage but decision coverage

Neither coverage criterion subsumes the other!

Structural code coverage: subsumption

Given two coverage criteria A and B,
A subsumes B iff satisfying A implies satisfying B

e Subsumption relationships:

O

©)
©)
©)

Statement coverage does not subsume decision coverage
Decision coverage subsumes statement coverage

Decision coverage does not subsume condition coverage
Condition coverage does not subsume decision coverage

Path coverage

throw new lllegalArgumentException(

Exceptional
“Array a must not be null or empty!”)

exit

return sum/a.length

sum += num

true

sum -= num

v

