
CSE 503
Software Engineering

Software Testing

Today

● Course projects

● Introduction to software testing
○ Blackbox vs. whitebox testing
○ Unit testing (vs. integration vs. system testing)
○ Test adequacy: code coverage

■ Statement coverage
■ Decision coverage (Branch coverage)
■ Condition coverage
■ Path coverage

● Discussion of DART: Directed Automated Random Testing

Software Testing 101

Software testing vs. software debugging

 1 double avg(double[] nums) {
 2 int n = nums.length;
 3 double sum = 0;
 4

 5 int i = 0;
 6 while (i<n) {
 7 sum = sum + nums[i];
 8 i = i + 1;
 9 }
10
11 double avg = sum * n;
12 return avg;
13 }

Testing: is there a bug?
@Test
public void testAvg() {
 double nums =

 new double[]{1.0, 2.0, 3.0});
 double actual = Math.avg(nums);
 double expected = 2.0;
 assertEquals(expected,actual,EPS);
}

Software testing vs. software debugging

 1 double avg(double[] nums) {
 2 int n = nums.length;
 3 double sum = 0;
 4

 5 int i = 0;
 6 while (i<n) {
 7 sum = sum + nums[i];
 8 i = i + 1;
 9 }
10
11 double avg = sum * n;
12 return avg;
13 }

Testing: is there a bug?
@Test
public void testAvg() {
 double nums =

 new double[]{1.0, 2.0, 3.0});
 double actual = Math.avg(nums);
 double expected = 2.0;
 assertEquals(expected,actual,EPS);
}

testAvg failed: 2.0 != 18.0

Software testing vs. software debugging

 1 double avg(double[] nums) {
 2 int n = nums.length;
 3 double sum = 0;
 4

 5 int i = 0;
 6 while (i<n) {
 7 sum = sum + nums[i];
 8 i = i + 1;
 9 }
10
11 double avg = sum * n;
12 return avg;
13 }

Testing: is there a bug?
@Test
public void testAvg() {
 double nums =

 new double[]{1.0, 2.0, 3.0});
 double actual = Math.avg(nums);
 double expected = 2.0;
 assertEquals(expected,actual,EPS);
}

testAvg failed: 2.0 != 18.0

Debugging: where is the bug?

 how to fix the bug?

Two strategies: black box vs. white box

Black box testing
● The system is a black box (can’t see inside).
● No knowledge about the internals of a system.
● Create tests solely based on the specification (e.g.,

input/output behavior).

White box testing
● Knowledge about the internals of a system.
● Create tests based on these internals (e.g., exercise a

particular part or path of the system).

Unit testing, integration testing, system testing

Unit testing
● Does each unit work as specified?

Integration testing
● Do the units work when put together?

System testing
● Does the system work as a whole?

Unit testing

● A unit is the smallest testable part of the software system
(e.g., a method in a Java class).

● Goal: Verify that each software unit performs as specified.

● Focus:
○ Individual units (not the interactions between units).

○ Usually input/output relationships.

Test effectiveness

Software testing can show the presence of defects,
but never show their absence! (Edsger W. Dijkstra)

● A good test is one that fails because of a defect.

How do we come up with good tests?

Test effectiveness

Ratio of detected defects is the best effectiveness metric!

Problem
● The set of defects is unknowable.

Solution
● Use a proxy metric (e.g., code coverage or mutation analysis).

Structural code coverage: example

public double avgAbs(double ... a) {

 // We expect the array to be non-null and non-empty
 if (a == null || a.length == 0) {
 throw new IllegalArgumentException("Array a must not be null or empty!");
 }

 double sum = 0;
 for (int i=0; i<a.length; ++i) {
 double num = a[i];
 if (num < 0) {
 sum -= num;
 } else {
 sum += num;
 }
 }

 return sum/a.length;
}

Average of the absolute values of an array of doubles

What’s the CFG for this method?

Structural code coverage: example

public double avgAbs(double ... a) {

 // We expect the array to be non-null and non-empty
 if (a == null || a.length == 0) {
 throw new IllegalArgumentException("Array a must not be null or empty!");
 }

 double sum = 0;
 for (int i=0; i<a.length; ++i) {
 double num = a[i];
 if (num < 0) {
 sum -= num;
 } else {
 sum += num;
 }
 }

 return sum/a.length;
}

Average of the absolute values of an array of doubles

Statement coverage

● Every statement in the program must be
executed at least once.

● Given the control-flow graph (CFG), this is
equivalent to node coverage.

Statement coverage
Entry
point

a==null ||
a.length==0

sum = 0

i = 0

i<a.length return sum/a.length Normal
exit

Exceptional
exit

throw new IllegalArgumentException(
 “Array a must not be null or empty!”)

true

true

false

false

num < 0 sum += numfalse

true

sum -= num

++i

num = a[i]

Condition coverage vs. decision coverage

Terminology
● Condition: a boolean expression that cannot be decomposed into

simpler boolean expressions.

● Decision: a boolean expression that is composed of conditions, using
0 or more logical connectors (a decision with 0 logical connectors is a
condition).

● Example: if (a & b) { … }
■ a and b are conditions.
■ The boolean expression a & b is a decision.

Decision coverage (aka branch coverage)

● Every decision in the program must take on
all possible outcomes (true/false) at least once

● Given the CFG, this is equivalent to edge coverage

● Example: (a>0 & b>0)
○ a=1, b=1
○ a=0, b=0

Decision coverage (aka branch coverage)
Entry
point

a==null ||
a.length==0

sum = 0

i = 0

i<a.length return sum/a.length Normal
exit

Exceptional
exit

throw new IllegalArgumentException(
 “Array a must not be null or empty!”)

true

true

false

false

num < 0 sum += numfalse

true

sum -= num

++i

num = a[i]

Condition coverage

● Every condition in the program must take on
all possible outcomes (true/false) at least once

● Example: (a>0 & b>0)
○ a=1, b=1
○ a=0, b=0

Condition coverage
Entry
point

a==null ||
a.length==0

sum = 0

i = 0

i<a.length return sum/a.length Normal
exit

Exceptional
exit

throw new IllegalArgumentException(
 “Array a must not be null or empty!”)

true

true

false

false

num < 0 sum += numfalse

true

sum -= num

++i

num = a[i]

Structural code coverage: subsumption

Given two coverage criteria A and B,
A subsumes B iff satisfying A implies satisfying B

● Subsumption relationships:
○ Does statement coverage

subsume decision coverage?

○ Does decision coverage
subsume statement coverage?

○ Does decision coverage
subsume condition coverage?

○ Does condition coverage
subsume decision coverage?

Decision coverage vs. condition coverage

4 possible tests for the decision a | b:
1. a = 0, b = 0
2. a = 0, b = 1
3. a = 1, b = 0
4. a = 1, b = 1

Neither coverage criterion subsumes the other!

a b a | b

0 0 0

0 1 1

1 0 1

1 1 1

a b a | b

0 0 0

0 1 1

1 0 1

1 1 1
Satisfies condition coverage

but not decision coverage
Does not satisfy condition

coverage but decision coverage

Structural code coverage: subsumption

Given two coverage criteria A and B,
A subsumes B iff satisfying A implies satisfying B

● Subsumption relationships:
○ Statement coverage does not subsume decision coverage
○ Decision coverage subsumes statement coverage
○ Decision coverage does not subsume condition coverage
○ Condition coverage does not subsume decision coverage

Path coverage
Entry
point

a==null ||
a.length==0

sum = 0

i = 0

i<a.length return sum/a.length Normal
exit

Exceptional
exit

throw new IllegalArgumentException(
 “Array a must not be null or empty!”)

true

true

num < 0 sum += numfalse

sum -= num

++i

num = a[i]

false

true

false

