
CSE 503
Software Engineering

Course introduction

Today

● Logistics
● Brief introduction
● Course overview
● Why program analysis?

Logistics

● Tue/Thu, 11:30am – 12:50pm.

● Course material, schedule, etc. on course website:
https://courses.cs.washington.edu/courses/cse503/22sp/
All slides are posted before class.

● Assignment submission and discussions via Canvas:
https://canvas.uw.edu/courses/1545328
Linked from webpage.

https://courses.cs.washington.edu/courses/cse503/22sp/
https://canvas.uw.edu/courses/1545328

The CSE 503 team
Instructor
● Michael Ernst
● Office hours: After class and by appointment
● mernst@cs.washington.edu

Teaching assistant
● Martin Kellogg
● Office hours: TBD
● kelloggm@cs.washington.edu

Your background

Introduction and a very brief survey

● What is your research area (or area of interest)?
● How long have you been in the program?
● What is your SE background (programming languages, etc.)?

Today

● Logistics
● Brief introduction
● Course overview
● Why program analysis?

What is Software Engineering?

What is Software Engineering?

● Developing in an IDE
and software ecosystem?

What is Software Engineering?

● Developing in an IDE
and software ecosystem?

● Testing and debugging?

What is Software Engineering?

● Developing in an IDE
and software ecosystem?

● Testing and debugging?

● Deploying and running
a software system?

What is Software Engineering?

● Developing in an IDE
and software ecosystem?

● Testing and debugging?

● Deploying and running
a software system?

● Empirical evaluations?

What is Software Engineering?

● Developing in an IDE
and software ecosystem

● Testing and debugging

● Deploying and running
a software system

● Empirical evaluations

● Modeling and designing

What is Software Engineering?

More than just writing code
The complete process of specifying, designing, developing,
analyzing, deploying, and maintaining a software system.

● Common Software Engineering tasks include:
○ Requirements engineering
○ Specification writing and documentation
○ Software architecture and design
○ Programming
○ Software testing and debugging
○ Refactoring

What is Software Engineering?

More than just writing code
The complete process of specifying, designing, developing,
analyzing, deploying, and maintaining a software system.

● Common Software Engineering tasks include:
○ Requirements engineering
○ Specification writing and documentation
○ Software architecture and design
○ Programming Just one out of many important tasks!
○ Software testing and debugging
○ Refactoring

(Development workflow at Microsoft, Big Code summit 2019)

The Role of Software Engineering in Practice

The Role of Software Engineering in Research

Experimental infrastructure is software, too!

Example (automated debugging)
● 150 configurations, 1000+ benchmarks
● 1-85 hours per execution
● 200,000+ CPU hours (~23 CPU years)

1 0.34 0.81

2 0.52 0.32

3 0.21 0.53

4 0.81 0.22

...

Infrastructure

Design space
exploration

Course overview: the big picture
● Week 1: Introduction & static vs. dynamic analysis

● Week 2: Abstract Interpretation

● Week 3: Abstract Interpretation

● Week 4: Testing

● Week 5: Delta Debugging

● Week 6: Invariants

● Week 7: Program Repair

● Week 8: Empirical Software Engineering

● Week 9: ML for Software Engineering

● Week 10: Wrap up

Course overview: the big picture
● Week 1: Introduction & static vs. dynamic analysis

● Week 2: Abstract Interpretation

● Week 3: Abstract Interpretation

● Week 4: Testing

● Week 5: Delta Debugging

● Week 6: Invariants

● Week 7: Program Repair

● Week 8: Empirical Software Engineering

● Week 9: ML for Software Engineering

● Week 10: Wrap up

Questions?

HW 1

HW 2

In-class exercise

Project presentation

Course overview: this week
● Week 1: Introduction & static vs. dynamic analysis HW 1

● Two high-level papers

○ Static and dynamic analysis: synergy and duality
○ Lessons from Building Static Analysis Tools at Google

● HW 1
○ Brainstorming about software development difficulties
○ Please start right away!

Course overview: the project
Logistics
● 2-4 team members
● Synergies with your work are welcome! (Project ideas provided after HW 1)

Timeline
● Week 3/4: Project proposal and revision
● Week 6: Related work and methodology
● Week 8: Coding completed and initial results
● Week 10: Presentation and final report

Course overview: the project
Logistics
● 2-4 team members
● Synergies with your work are welcome! (Project ideas provided after HW 1)

Timeline
● Week 3/4: Project proposal and revision
● Week 6: Related work and methodology
● Week 8: Coding completed and initial results
● Week 10: Presentation and final report

Types of projects (non-exhaustive)
● proposing and evaluating a new technique
● developing and assessing new algorithms to replace currently-used ones
● translating a methodology to a new problem domain
● applying known techniques to new problem domains
● evaluation of existing techniques or tools (case studies or controlled experiment)
● implementation of a proposed but never implemented technique

Questions?

Course overview: the big picture
● Week 1: Introduction & static vs. dynamic analysis

● Week 2: Abstract Interpretation

● Week 3: Abstract Interpretation

● Week 4: Testing

● Week 5: Delta Debugging

● Week 6: Invariants

● Week 7: Program Repair

● Week 8: Empirical Software Engineering

● Week 9: ML for Software Engineering

● Week 10: Wrap up

HW 1

HW 2

In-class exercise

Project presentation

Special topics:
● 504: AI meets Software engineering

(ML and statistical methods for SE/program analysis)

● 599: Research methods
(Research design and statistics in R)

And there is more...

Course overview: the big picture
● Week 1: Introduction & static vs. dynamic analysis

● Week 2: Abstract Interpretation

● Week 3: Abstract Interpretation

● Week 4: Testing

● Week 5: Delta Debugging

● Week 6: Invariants

● Week 7: Program Repair

● Week 8: Empirical Software Engineering

● Week 9: ML for Software Engineering

● Week 10: Wrap up

HW 1

HW 2

In-class exercise

Project presentation

Course overview: grading

● 50% Class project
● 35% HWs, in-class exercise, reading questions
● 15% Participation

Questions?

Course overview: expectations

● Conducting a quarter-long research project
● Some programming experience
● Reading and actively discussing research papers

● Have fun!

Today

● Logistics
● Brief introduction
● Your background
● Course overview
● Why program analysis?

Who cares about program analysis?

● ~15 million lines of code

Let’s say 50 lines per page (0.05 mm)

Who cares about program analysis?

● ~15 million lines of code

Let’s say 50 lines per page
● 300000 pages
● 15 m (49 ft)

Who cares about program analysis?

Who cares about program analysis?

Who cares about program analysis?

Program analysis: examples

Does my program implement its specification?
double foo(double[] d {
 int n = d.length;
 double s = 0;
 int i = 0;
 while (i<n)
 s = s + d[i];
 i = i + 1;
 double a = s / n;
 return a;
}

Program analysis: examples

Does my program implement its specification?

Example analyses
● Unit testing

● Solver-aided reasoning

double foo(double[] d {
 int n = d.length;
 double s = 0;
 int i = 0;
 while (i<n)
 s = s + d[i];
 i = i + 1;
 double a = s / n;
 return a;
}

Program analysis: examples

What does this program (binary) do?

Program analysis: examples

What does this program (binary) do?

Example analyses
● Fuzzing

● Statistical inference of
invariants and models

Program analysis: examples

Autocompletion: which methods to suggest?

Program analysis: examples

Autocompletion: which methods to suggest?

Example analyses
● Context-sensitive

type checking

● Heuristics and
frequency analysis

Program analysis: examples

Semantics: how to name this method?

Program analysis: examples

Semantics: how to name this method?

Example analyses
● Statistical language models

(bag of words, n-grams, etc.)

● Heuristics and frequency analysis

Next time: static vs. dynamic analysis

A static analysis analyzes program source code without
running the program
● What are examples?

A dynamic analysis observes program executions
● What are examples?

Which one should a programmer prefer, and why?

