
CSE 503 Winter 2013  David Notkin 

Lecture #4 Notes:  proving ADTs, electrifying verification 
 

1. Proving a procedure/method – earlier lecture.  Define semantics of programming language 

constructs.  Write down the pre- and post-condition – the specification – for the procedure.  

Show that the states defined by the pre-condition are transformed into (a logical formula that 

implies the) post-condition using the semantic definitions. Roughly. 

2. Types 

a. Without getting precise, types are used to interpret and manipulate the bit patterns – that 

is, they give them (some level of) meaning 

b. “Concrete” types manipulate the information in memory directly 

c. Abstract types define a protocol for manipulating instances of those types, but they do not 

define an implementation 

d. Abstract data type = objects + operations 

e. The only operations on objects of the type are those provided by the abstraction 

f. The implementation is hidden 

g. We need to show that the abstraction and the implementation are each “correct” … and 

properly related … to be continued 

2. Big picture 

 

An Abelian grape (sorry) 

3. Specifying ADTs 



a. A common way is to define the abstract effect of each operation (including constructors) 

using formal/informal pre- and post-conditions 

b. Might see this using an extended JavaDoc 

c. Example 

// Overview: An IntSet is a mutable, unbounded set of integers.  

class IntSet { 

 

 // effects: makes a new IntSet = {} 

public IntSet() 

 

// returns: true if x  this 

//          else returns false public boolean contains(int x) 

// effects:  thispost = thispre  {x} 

public void add(int x) 

// effects:  thispost = thispre - {x} 

public void remove(int x) 

… 

4. Algebraic specifications -- From Stotts (http://www.cs.unc.edu/~stotts/723/adt.html) 

a. Define a sort – give signatures of operations (you’ve seen this kind of thing before in typed 

OO and functional languages) 

 

sort IntSet imports Int, Bool 

signatures 

    new : -> IntSet 

    insert : IntSet × Int -> IntSet 

    member : IntSet × Int -> Bool 

    remove : IntSet × Int -> IntSet 

 

b. Define axioms -- “Just” like high school algebra 

variables i, j : Int; s : IntSet 

axioms 

    member(new(), i) = false 

    member(insert(s, j), i) = 

        if i = j then true else member(s, i) 

    remove(new(), i) = new() 

    remove(insert(s, j), i) =  

        if i = j then remove(s, i) 

                 else insert(remove(s, i), j)       

http://www.cs.unc.edu/~stotts/723/adt.html


c. Are these really sets? 

i. Posit stuff like… 

insert(insert(s, i), j) = 

insert(insert(s, j), i)  

 

ii. insert(insert(s, i), i) = insert(s, i) 

d. Prove from axioms 

e. Tons of issues about completeness, consistency, equality (initial vs. final algebras), etc. 

f. But again, “just” like high school algebra 

5. Proving specification properties 

a. Regardless of the style of specification, proofs are usually done inductively 

b. No information about the concrete representation and implementation – rather, showing 

the correctness of the protocol over the ADT’s operations 

c. LetterSet case-insensitive character set [from Ernst] 

// effects: creates an empty LetterSet 

public LetterSet ( ); 

// effects: thispost = 

//          if ( c1  thispre | toLowerCase(c1) = toLowerCase(c) 

//             then thispre else thispre  {c} 

public void insert (char c); 

// effects: thispost = thispre  {c} 

public void delete (char c); 

 

// returns:  (c  this) 

public boolean member (char c); 

In small groups, sketch a proof that a large enough LetterSet contains two distinct characters 

6. Abstraction function and representation invariant 

a. Abstraction function (AF): Ec→ Ea 

i. Maps a concrete object to an abstract value 

ii. Defines how the data structure is to be interpreted 

b. Representation invariant (RI): a boolean predicate characterizing legal concrete 

representations 

i. States data structure well-formedness -- in essence, defines the domain of AF 

ii. Captures information that must be shared across implementations of multiple 

operations 

  



CharSet Abstraction 

A finite mutable set of Characters [From Ernst] 

 

// Overview: A CharSet is a finite mutable set of Character 

// effects: creates a fresh, empty CharSet  

public CharSet ( ) 

 

// effects: thispost = thispre  {c} 

public void insert (Character c); 

// effects: thispost = thispre - {c} 

public void delete (Character c); 

// returns: (c  this) 

public boolean member (Character c); 

 

// returns: cardinality of this 

public int size ( ); 

 

A CharSet implementation 

class CharSet { 

    private List<Character> elts = new ArrayList<Character>(); 

public void insert(Character c) { 

    elts.add(c); 

 } 

public void delete(Character c) { 

    elts.remove(c); 

} 

public boolean member(Character c) { 

    return elts.contains(c); 

} 

public int size() { 

    return elts.size(); 

} 

… 

The RI can help identify an error 

i. Perhaps  delete is wrong -- It should remove all occurrences 



ii. Perhaps  insert is wrong -- it should not insert a character that is already there 

 

class CharSet { 

  // Rep invariant: elts has no nulls and no duplicates 

  private List<Character> elts; 

  … 

 

Or… 

a.  indices i of elts . elts.elementAt(i) ≠ null 

b.  indices i, j of elts . i ≠ j  

elts.elementAt(i).equals(elts.elementAt(j)) 

 

iii. Where’s the error? 

// Rep invariant: elts has no nulls and no duplicates  

public void insert(Character c) { 

    elts.add(c); 

} 

public void delete(Character c) { 

    elts.remove(c); 

} 

The RI constrains structure, not meaning – but if the RI fails, it means that the ADT has no well-

defined meaning 

Another implementation of insert that preserves the RI 

public void insert(Character c) {  

    Character cc = new Character(encrypt(c)); 

    if (!elts.contains(cc)) 

        elts.addElement(cc); 

} 

public boolean member(Character c) { 

    return elts.contains(c); 

} 

The program is wrong … call on the AF, abstraction function mapping concrete to abstract values 

AF(CharSet this) = { c | c is contained in this.elts } 

i. set of Characters represented by elements contained in this.elts 

ii. Typically not executable, but useful to reason about client behavior  



iii. Helps reason about the semantics of insert 

// effects: thispost = thispre  {c} 

public void insert (Character c); 

iv. Helps identify a problem 

a. Applying the AF to the result of the call to insert yields 

AF(elts)  {encrypt(‘a’)} 

v. Consider the following reasonable AF 

a. AF(this) = { c | encrypt(c) is contained in this.elts } 

b. AF(this) = { decrypt(c) | c is contained in this.elts 

vi. “Placing blame” using AF 

a. AF(CharSet this) = { c | c is contained in this.elts } 

b. Consider a call to insert: 

i. On entry, the meaning is AF(thispre) ≈ eltspre 

ii. On exit, the meaning is AF(thispost) = AF(thispre)    

           {encrypt(‘a’)} 

vii. Does this AF fix things? 

AF(this) = { c | encrypt(c) is contained in this.elts } 

     = { decrypt(c) | c is contained in this.elts } 

7. Looking at these examples using the commutative diagram may help clarify any confusions 

a. AF’s can be maintained across fairly complicated implementations that (for example) 

reorganize dynamically for performance -- Multiple concrete values still map to the same 

abstract value 

b. Why map concrete to abstract? 

i. It’s not a function in the other direction 

ii. Ex: lists [a,b] and [b,a] each represent the set {a, b} 

iii. It’s not as useful in the other direction 

8. Electrifying formalisms 

a. One thing is clear so far: programs execute – they are kinetic – while formalisms just sit 

there – they represent potential 

b. The goal is the execution behaviors; the formalisms/programs are the conduit 

c. This property makes many formalisms less attractive to many people, as the benefits are 

harder to see 

d. “It is easier to change the specification to fit the program than vice versa.” –Perlis 



e. Daniel Jackson (and others) have worked on addressing this concern by “electrifying” 

formalisms – that is, making them “executable” in some sense, or at least providing useful 

feedback to a developer quickly 

f. Alloy is Jackson’s core approach to this, but it’s not the only one out there – the objective, in 

some sense, is to put formalisms “in motion”, making them more alive and thus more 

interesting and perhaps of some value.  Automated verification is real now, even with lots of 

problems, so electrification Is making progress. 

g. One way to electrify a formalism is to execute it – many formalisms represent high-level 

programs 

i. Google Scholar found ~95K entries to “executable specifications” 

ii. Many such executable specifications look a lot like (various kinds of) logic programs 

or functional programs; much of this work is related to automatic programming 

iii. The execution gives insight into what the specification means 

iv. Performance of these “programs” is usually poor 

v. And automated refinement techniques to evolve from an executable specification to 

an efficient program seem to be limited 

vi. This work goes back to at least 1976 with Darlington, Burstall, Manna and others 

h. Type checking is another form of electrification – quick feedback on common potential 

errors.  Types are becoming increasing rich, too, adding power to this. 

9. Model checking is one of the bases for electrifying comparisons of program views 

a. Basic inputs: finite state machine and temporal logic formula 

b. Basic outputs: “Yes” (satisfies), “No” (doesn’t satisfy, and here’s a counterexample that 

shows a path through the state machine that contradicts the temporal logic formula. 

c. Questions include 

i. What can the finite state machines and temporal logic formulae represent? 

ii. What does “satisfy” mean? How does “satisfy” work?  Why should we care?  

iii. What is a counterexample?  

iv. What does “Yes” actually mean? 

  



 

10. State machine 

 

 

 

 

 

 

 

 

 

a. Generate computation tree from state machine to represent all possible FSM paths. 

b. Even though it’s an FSM, there may be infinite paths; but they will have structure because 

they are generated from the FSM. 

 

c. Then apply the temporal logic formula to the computation tree 

d. Model checking answers questions about this tree structure – kinds of queries include 

i. Does every accepting input include a 0? A 1? 

ii. Does any accepting input include a 0? A 1? 

iii. Does every accepting input that has a 1 have a 1 in the remaining input? 

iv. More generally, safety and liveness properties of many kinds 
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11. FAQ 

a. What can the finite state machines and temporal logic formulae represent? 

i. Lot’s! 

b. What does “satisfy” mean? How does “satisfy” work?  

i. Satisfy means that the temporal logic formula is guaranteed to hold over the 

computation tree defined by the FSM 

c. Why should we care? 

i. Guarantees can be a good thing 

d. What is a counterexample?  

i. A path through the computation tree that contradicts the temporal logic formula 

ii. There is a mismatch between the two descriptions – but one cannot tell which is 

“wrong” without further work 

e. What does “Yes” actually mean? 

i. It is a guarantee that the property holds, but it provides no guarantee that the 

property or the FSM are what the developers thinks they are 

12. Two kinds of model checkers 

a. Explicit – represent all states 

i. Use conventional state-space search 

ii. Reduce state space by folding equivalent states together 

b. Symbolic – represent sets of states using boolean formulae 

i. Reduce huge state spaces by considering large sets of states simultaneously – to the 

first order, this is the meeting of BDDs (binary decision diagrams) and model 

checking (more later) 

ii. Convert state machines, logic formulae, etc. to boolean representations 

iii. Perform state space exploration using boolean operators to perform set operations 

iv. SAT solvers are often at the base of symbolic model checking 

 


