
CSE 503 Winter 2013  David Notkin 

Lecture #2 Notes:  programs, behaviors, ambiguity 
 

1. International Obfuscated C Code Contest  

 

 

 

 

 

 

 

 

 

 

2. Why is this program distasteful? 

a. Indentation? 

b. Documentation? 

c. Behaviors? 

d. Structure? 

e. Reasoning – loops, invariants? 

f. Fixing it? 

g. Changing it? 

3. Programs have three immediate audiences 

a. The computer 

b. The developers 

c. The users 

4. Are the audiences happy? 

a. Given that this program compiles and executes as intended, the computer 

is perfectly happy 

b. Under almost no conditions are the developers happy with this program 

c. What about the users? 

#include <stdio.h> 

#include <stdlib.h> 

#include <math.h> 

#define _   ;double 

#define void   x,x 

#define case(break,default) break[O]:default[O]: 

#define switch(bool)   ;for(;x<bool; 

#define do(if,else)  inIine(else)>int##if? 

#define true   (--void++) 

#define false   (++void--) 

char*O=" <60>!?\\\n"_ doubIe[010]_ int0,int1 _ Iong=0 _ inIine(int eIse){int 

O1O=!O _ l=!O;for(;O1O<010;++O1O)l+=(O1O[doubIe]*pow(eIse,O1O));return l;}int 

main(int booI,char*eIse[]){int I=1,x=-*O;if(eIse){for(;I<010+1;I++)I[doubIe-1] 

=booI>I?atof(I[eIse]):!O switch(*O)x++)abs(inIine(x))>Iong&&(Iong=abs(inIine(x 

)));int1=Iong;main(-*O>>1,0);}else{if(booI<*O>>1){int0=int1;int1=int0-2*Iong/0 

[O]switch(5[O]))putchar(x-*O?(int0>=inIine(x)&&do(1,x)do(0,true)do(0,false) 

case(2,1)do(1,true)do(0,false)6[O]case(-3,6)do(0,false)6[O]-3[O]:do(1,false) 

case(5,4)x?booI?0:6[O]:7[O])+*O:8[O]),x++;main(++booI,0);}}} 



5. Software engineering…is primarily concerned with the “happiness” of the 

software engineering team and with the “happiness” of the users – The 

“happiness” of the computer (performance, etc.) is material, but less so 

6. We will focus more overall on the software engineering team than on the users – 

due largely to my knowledge and interests 

7. The developers need to be able to – at reasonable cost, whatever that means – 

understand, reason about, fix, change, enhance, etc. the program 

8. An aside: performance: quotations 

a. Michael Jackson 

i. Rule 1: Don't do it. 

ii. Rule 2 (for experts only): Don't do it yet. 

b. Bill Wulf: More computing sins are committed in the name of efficiency 

(without necessarily achieving it) than for any other single reason – 

including blind stupidity. 

c. Don Knuth: We should forget about small efficiencies, say about 97% of 

the time: premature optimization is the root of all evil. 

9. Why is software engineering hard?  (This in contrast to perceptions of what 

software engineering should be able to do. 

a. Validation vs. verification 

i. Building the system right (verification)  vs. building the right 

system (validation) –Barry Boehm 

ii. Distinct objectives intertwined in non-obvious ways – the 

distinction itself is often poorly understood or ignored 

iii. Changes to the system’s requirements cause changes to the 

implementation 

iv. Difficulties in implementation can cause (the need for) changes to 

the requirements 

b. Dominant discipline – Stu Feldman 

103 Lines of Code Mathematics 
104 LOC Science 
105 LOC Engineering 
106 LOC Social Science 
107 LOC Politics 
10+  LOC ??? 

 

c. Design under constraints 

i. Software, like other engineered entities, is designed and built 

under constraints 

ii. Some of the constraints are explicit and many are implicit 

iii. Constraints are broad, ranging across customer needs, shipping 

deadlines, resource limitations (memory, power, money, etc.), 



compatibility, reward structure, organizational culture, and much 

more… 

d. A consequence of varied constraints 

i. There is no single right way to engineer software: no best 

programming language, design method, software process, testing 

approach, team structure, etc. 

ii. This does not imply that every approach is good under some 

constraints 

iii. Nor does it suggest that there are no consistent themes across 

effective approaches 

iv. But committing to a single “best approach” can be limiting 

v. “Please don't fall into the trap of believing that I am terribly 

dogmatical about [the goto statement]. I have the uncomfortable 

feeling that others are making a religion out of it, as if the 

conceptual problems of programming could be solved by a single 

trick, by a simple form of coding discipline!”     –Dijkstra  

vi. “Don’t get your method advice from a method enthusiast.  The 

best advice comes from people who care more about your problem 

than about their solution.”   –M. Jackson  

e. Complexity 

i. “Software entities are more complex for their size than perhaps 

any other human construct, because no two parts are alike (at least 

above the statement level).  If they are, we make the two similar 

parts into one…  In this respect software systems differ 

profoundly from computers, buildings, or automobiles, where 

repeated elements abound.” —Brooks 

ii. Complexity and people – Dijkstra 

1. “The competent programmer is fully aware of the limited 

size of his own skull.” 

2. “Software is so complex that our poor head cannot cope 

with it at all. Therefore, we have to use all possible means 

and methods to try to control this complexity.” 

f. Size 

50MLOC = 50 million lines of code 

50 lines/page-side  1M page-sides 

1K page-sides/ream  1K reams 

2 inches/ream  2K inches 

2K inches = 167 feet  twice the height of the Allen Center 

5 words/LOC @ 50 wpm  50MLOC/5M min 

5M min = 83,333 hr = 3,472 days  10 years 

Just for typing … no fair thinking! 

g. Design space complexity [Jackson] 



i. Designing both automobiles and bridges requires specialized 

knowledge  

ii. Automobile design is standardized: the designers know virtually 

everything about the context in which the automobile will be used: 

expected passenger weights, what kind of roads will be 

encountered, etc. 

iii. But bridge design is not standardized: the designers must 

understand the specific location in which the bridge will be built: 

the length of the span, the kind of soil, the expected traffic, etc. 

iv. Software design space is widely and wildly non-standardized (as 

well as being specialized).   Figuring out what the user wants and 

needs is hard and is almost always part of the job; for most 

software systems, this goes far beyond designing a bridge for a 

specific location 

v. A classic exception is some classes of compilers 

1. The PQCC project at CMU (Wulf et al., 1980) led to the 

formation of Tartan Laboratories, which was acquired by TI 

(1996) primarily to construct C compilers for DSPs – in 

essence, this became standardized 

2. Jackson suggests that “compiler engineering” (and such) 

might make sense, in contrast to “software engineering” 

vi. All useful programs undergo continuing change 

Belady and Lehman (1976) 

1. Adding floors to skyscrapers, lanes to bridges 

2. Accommodating new aircraft at airports 

3. Adding Cyrillic-based languages to European Union 

documents 

4. Scaling software systems by an order of magnitude (pick 

your dimension) 

5. Supporting the web in a desktop productivity suite 

6. Adding support for Asian languages to a tool 

7. That is, a significant amount of “software maintenance” 

makes changes for which roughly analogous changes would 

be considered non-routine in most other fields 

10. One more difficulty in more depth 

a. Dijkstra’s1968 “goto considered harmful” letter to the editor of CACM is 

a classic 

b. Mark Twain: “A classic is something everyone wants to have read, but 

nobody wants to read.”   

c. My version of his key argument  

i. We write programs but we care about executions – getting the 

behaviors we want is indirect 



ii. But reasoning about arbitrary behaviors is very hard due to the 

limits of the human brain 

iii. By reducing the gap between the program and the behaviors, we 

can do better in terms of reasoning 

d. Example [Adapted from Wikipedia, Spaghetti Code] 

 

 

 

 

 

 

 

 

 

 

Only one behavior in this example, but not straightforward to reason 

about (at least in general) – must simulate the control flow 

e. Example continued: use while loop 

 

 

 

 

 

 

 

 

 

 

Still only one behavior, but the loop is clearer – can more easily separate 

“doing the loop” and “exiting the loop” 

 

Will allow invariants and proofs – easier reasoning 

 

f. Böhm and Jacopini  CACM May 1966 [Wikipedia for additional history] 

i. They showed a construction that takes an arbitrary program and 

produces a program with equivalent behaviors that has a 

structured control flow graph that uses only sequencing (;), 

conditionals (if-then), loops (while-do) 

ii. Basic idea: encode the program counter in a program variable  

iii. So, what’s the problem? 

11. Programming languages research 

 10 i = 0

 20 i = i + 1

 30 PRINT i * i

 40 IF i >= 10 THEN GOTO 60

 50 GOTO 20

 60 PRINT "Done"

 70 END

i := 1; 

while i <= 10 do 

   PRINT i*i; 

   i := i + 1 

end; 

 PRINT “DONE”



a. Very roughly, (my view is that) most programming languages research 

focuses on ways to reason about sets of behaviors through programs 

b. One program with (most often) an unbounded numbers of behaviors 

c. Changes are to the program, with the intent of achieving desired changes 

in the behaviors 

12. Proofs-of-correctness 

a. A strong connection between the static program and the dynamic 

behaviors also enables proofs-of-correctness to be done precisely and 

formally 

b. Dijkstra, Hoare, Wirth, et al. did this in the late 1960’s and early 1970’s as 

step-wise refinement 

i. Pseudo-code is repeatedly expanded until the translation into 

programming language code is obvious 

ii. Choose a module 

iii. Decompose into smaller modules 

iv. Repeat until all modules are easily understood 

v. Provide explicit specification of the program, annotate it with 

assertions, use programming language semantics to prove those 

assertions 

13. Basics of proofs-of-correctness 

a. In a logic, write down the specification 

i. the effect of the computation that the program is required to 

perform (the postcondition Q) 

ii. any constraints on the input environment to allow this 

computation (the precondition P) 

b. A Hoare triple is a predicate { P } S { Q} that is true whenever P holds and 

the execution of S guarantees that Q holds  

c. To prove { P } S { Q} requires 

i. a precisely defined logical meaning for each construct in the 

programming language 

ii. insertion of intermediate assertions to allow proofs to “flow” 

through the program 

1. { P } S { Q } 

 

{ P } S1; S2; if (..) S3 else S4 fi; S5 { Q } 

 

{ P } S1 {A}; S2 {B}; if (..) S3 else S4 fi; {C} S5 { Q } 

2. Prove { P } S1 { A } 

Prove { A } S2 { B } 

Prove { B } if… { C } 

Prove { C } S5 { Q } 

  



d. Trivial examples 

{ true } 

y := x * x; 

{y ≥ 0} 

 

{ x <> 0 } 

y := x * x; 

{ y > 0 } 

 

{ x > 0 } 

x := x + 1; 

{ x > 1 } 

 

{ x = k } 

if (x < 0) 

  x := -x 

fi; 

{    ?    } 

 

{    ?    } 

x := 3; 

{ x = 8 } 

 

14. The objective is the proof 

[Example from Aldrich/Leino]; simply having true post-conditions is not 

sufficient 

 

{ x = 5 } x := x * 2 { true } 

{ x = 5 } x := x * 2 { x > 0 } 

{ x = 5 } x := x * 2 { x  = 10 || x = 5 } 

{ x = 5 } x := x * 2 { x  = 10  } 

 

It is generally important to look for the logically strongest post-condition – that 

is, one that represents the most restrictive assertion consistent with the 

specification or with intermediate assertions 

 

15. Weakest preconditions [Example from Aldrich/Leino] 

a. Here are a number of valid Hoare Triples 

 

{x = 5 && y = 10} z := x / y { z < 1 } 

{x < y && y > 0}  z := x / y { z < 1} 

{y ≠ 0 && x / y < 1} z := x / y { z < 1 } 

The last one is the most useful because it allows us to invoke the 



program in the most general condition – it is called the weakest 

precondition, wp(S,Q) of S with respect to Q 

b. If {P} S {Q} and for all P’ such that P’ => P, then P is wp(S,Q)  

16. Conditional execution – formal semantics of “if-else” 

{P} if C S1 else S2 fi {Q} 

 

{true} 

if x >= y  

  max := x 

else 

  max := y 

fi 

{(max >= x  max >= y)} 

 

Is this a good post-condition? Does it do what we “want” or “expect”? Formalism 

doesn’t eliminate all confusion.  We likely want 

(max = x  max = y)  (max ≥ x  max ≥ y) 

 

17. In essence, every specification is satisfied by an infinite number of programs 

and vice versa: formalism is much more useful in showing you’ve built the 

system right than in showing you’ve built the right system 

18. Assignment statements 

{Q(E)} x := E {Q(x)} 

 

If we knew something to be true about E before the assignment, then we know it 

to be true about x after the assignment (assuming no side-effects) 

 

{y > 0} 

 x := y 

{x > 0} 

 

{x > 0}  [Q(E)  x + 1 > 1  x > 0 ]  

 x := x + 1; 

{x > 1}  [Q(x)  x > 1]  

 

19. Loops: {P} while B do S {Q} 

a. We can try to unroll this into 

 

{P   B} S {Q}   

{P  B} S{Q  B}  

{P  B} S {Q  B} S {Q  B}  … 

 



But we don’t know how far to unroll, since we don’t know how many 

times the loop can execute 

b. The most common approach to this is to find a loop invariant, which is a 

predicate that 

i. is true each time the loop head is reached (on entry and after each 

iteration)  

ii. and helps us prove the post-condition of the loop 

iii. The loop invariant approximates the fixed point of the loop 

iv. Three steps: find I such that… 

1. P  I   –Invariant is correct on entry 

2. {B  I} S {I} –Invariant is maintained 

3. {B  I}  Q –Q is true when loop terminates 

 

{n > 0} 

  x := a[1]; 

  i := 2; 

  while i <= n do 

    if a[i] > x then x := a[i]; 

    i := i + 1; 

  end; 

{x = max(a[i],…,a[n])} 

 

c. Termination 

i. Proofs with loop invariants do not guarantee that the loop 

terminates, only that it does produce the proper post-condition if 

it terminates – this is called weak correctness 

ii. A Hoare triple for which termination has also been proven is 

strongly correct 

iii. Proofs of termination are usually performed separately from 

proofs of correctness, and they are usually performed through 

well-founded sets 

20. Coming up next week: Proving properties of abstract data types 

a. Separate proofs of the specification (e.g., properties like x = 

S.top(S.push(x)) and of the concrete implementation of the methods (top, 

push, etc.) 

b. Define an abstraction function that gives a mapping from instances of the 

concrete representation to the abstract representation 

c. Define a representation invariant that holds across all legal instances of 

the concrete representation 

21. Open issues 

a. Automation – proof engines, proof assistants, etc. 



b. Programming language dimensions – side-effects, procedures/methods 

(and parameter passing), non-local control (e.g., exceptions), 

classes/objects etc., other language paradigms (e.g., functional), … 

c. Whence post-conditions? 

d. How much of a proof needs to be redone if the specification and/or the 

program changes slightly? 

e. The original promise of program verification has not been achieved, at 

least to the degree many anticipated 

i. At the same time, as we’ll see, it’s clear that the underlying 

techniques have made a huge difference and have supported a 

shift from  trying to prove big theorems about little programs to  

trying to prove little theorems about big programs 

ii. Aside: type-checking is in the second category 

22. Debunking a myth 

a. A culture – at least in the research world – developed in part due to this 

proof-centric view of the world 

b. Roughly this culture says it is crucial to prove properties of programs 

over all possible executions – otherwise the other executions may have 

unexpected behaviors 

c. That is, sampling of the behaviors (“testing”) is inherently problematic 

d. Sources of unsoundness: Dwyer et al.  

i. Matt Dwyer’s talk at ICSE 2007 put much of this issue in 

perspective: in my words, he argues that it’s all sampling  

ii. Dynamic techniques sample across executions (behaviors) 

iii. The “hope” is that some behaviors are characteristic of other 

behaviors 

iv. Static techniques sample across properties (requirements) 

v. The “hope” is that some requirements are good proxies for other 

requirements (e.g.,  type-safe and deadlock-free build confidence 

in correctness) 

vi. What we need to know is the degree of unsoundness; that is, we 

need to know what we know, and what we don’t know 

vii. It really shouldn’t be static “versus” dynamic – each has strengths, 

each has weaknesses: this is increasingly recognized in research – 

but not by everybody! 

 


