
CSE 503 Winter 2013 David Notkin

Lecture #1 Notes: Introduction

1. “Software engineering research”

a. Software is software

b. Software engineering is (roughly) the systematic construction of software

c. Software engineering research is the study of software and software

engineering and of ways to improve them both

2. So, what comes to mind when I say any of these three phrases? Shout it out! I’ll

write them on the board… (Can somebody write these down and mail them to

me? Or take a picture of them?)

3. In the beginning … computers were a much more precious resource than were

people – “it’s the money, honey”

a. “When we had no computers, we had no programming problem either.

When we had a few computers, we had a mild programming problem.

Confronted with machines a million times as powerful, we are faced with

a gigantic programming problem.” Dijkstra, 1972 Turing Lecture

b. The Intel 8008 was released around 1972: It was an 8-bit CPU with an

external 14-bit address bus that could address 16KB of memory

c. Programming languages that were developed around that time include C,

Smalltalk, Pascal, and Prolog

4. 1968 and 1969 NATO conferences on software engineering

a. Friedrich Bauer chaired in 1968, with about 50 attendees including

Turing Award winners Alan Perlis, Edsger Dijkstra and Peter Naur

b. There were increasing difficulties and costs in developing software – the

“human” vs. “computer” tradeoff had to be reconsidered

c. Topics covered aspects of software including

i. relation of software to the hardware of computers (including “the

highly controversial question of whether software should be priced

separately from hardware”)

ii. design of software

iii. production, or implementation of software

iv. distribution of software

v. achieving sufficient reliability for software that is increasingly

integrated into the central activities of modern society

vi. the difficulties of meeting schedules and specifications on large

software projects

vii. the education of software (or data systems) engineers

d. Rate of growth concerns

i. Helms: In Europe alone there are about 10,000 installed computers

— this number is increasing at a rate of anywhere from 25 per cent

to 50 per cent per year. The quality of software provided for these

computers will soon affect more than a quarter of a million

analysts and programmers.

ii. David: …OS/360 cost IBM over $50 million dollars a year during its

preparation, and at least 5000 man-years’ investment. TSS/360 is

said to be in the 1000 man-year category. It has been said, too, that

development costs for software equal the development costs for

hardware in establishing a new machine line.

iii. d’Agapeyeff: In 1958 a European general purpose computer

manufacturer often had less than 50 software programmers, now

they probably number 1,000-2,000 people; what will be needed in

1978?

5. The term “software crisis” was (perhaps) coined during these meetings and has

come down to questions like

a. Why does software cost so much?

b. Why does software [testing | maintenance | …] cost so much?

c. Why are there so many errors in software?

d. Why do so many software projects fail?

e. Why can’t software be more like hardware or cars or buildings or bridges

or …?

f. Why can’t software engineering be more like real engineering?

g. Where’s Moore’s Law for software?

6. Standish Report 1995

a. U.S. spends more than $250 billion annually on IT application

development

b. The average cost of a development project ranges from $434K (for small)

to $2.3M (for large) projects

c. 31.1% of projects will be canceled before completion

d. 52.7% of projects will cost 189% of their original estimates

e. The failure to produce reliable software to handle baggage at the new

Denver airport [cost] the city $1.1 million per day

f. “A great many of these projects will fail. Software development projects

are in chaos, and we can no longer imitate the three monkeys -- hear no

failures, see no failures, speak no failures.”

g. “The cost of these failures and overruns are just the tip of the proverbial

iceberg. The lost opportunity costs are not measurable, but could easily

be in the trillions of dollars.”

h. “One just has to look to the City of Denver to realize the extent of this

problem.”

7. “Software’s Chronic Crisis” by Gibbs Scientific American September 1994

a. “To veteran software developers, the Denver debacle is notable only for

its visibility. Studies have shown that for every six new large-scale

software systems that are put into operation, two others are canceled.

The average software development project overshoots its schedule by

half; larger projects generally do worse. And some three quarters of all

large systems are ‘operating failures’ that either do not function as

intended or are not used at all.”

8. More recent Standish Group reports show some improvement in the statistics

a. The, however, reports are still clear about the continuing presence of the

software crisis.

b. Jim Johnson, the founder and chairman of the Standish Group, said in

2006: “People know that the more common scenario in our industry is

still: over budget, over time, and with fewer features than planned.”

9. Software lifecycle costs: Evolution/maintenance 90%

http://www.cs.jyu.fi/~koskinen/smcosts.htm

a. “The relative cost for maintaining software and managing its evolution

now represents more than 90% of its total cost”

b. “[A]lthough there has not been much empirical research on this particular

area, the magnitude of the maintenance cost effects is clearly

identifiable.”

10. Software lifecycle costs: Testing/verification 50-75%

Hailpern & Santhanam, IBM Sys. Journal 2002

“In a typical commercial development organization, the cost of providing

[assurances of functional and non-functional performance] via appropriate

debugging, testing, and verification activities can easily range from 50 to 75

percent of the total development cost.”

11. So, these data show that…

a. …software costs too much on an absolute basis

b. …software lifecycle phases cost too much on a relative basis

c. …software projects are cancelled too often

12. "When you can measure what you are speaking about and express it in numbers,

you know something about it; but when you cannot measure it, when you

cannot express it in numbers, your knowledge is of a meagre and unsatisfactory

kind: it may be the beginning of knowledge but you have scarcely, in your

thoughts, advanced to the stage of science." —Lord Kelvin

a. I don’t agree with this – there is great value in qualitative analysis as well

b. Regardless, how do we measure “too”? as in …software costs too much…,

software lifecycle phases cost too much …, software projects are

cancelled too often…

13. Per-phase “pie” charts always have something in common – they total 100%, and

they always will, even if software gets more expensive and worse

a. A great way to compare the costs of phases

b. A terrible way to assess costs in any absolute sense

http://www.cs.jyu.fi/~koskinen/smcosts.htm

14. Testing and evolution: why might we care about what “too” means?

a. Is 50-75% too high for testing? What would be acceptable? Why? Is 0% a

good goal? Are there benchmarks from other engineering disciplines and,

if so, should we believe they may be analogous?

b. Is 90% for evolution and maintenance too high? What would be a good

goal? 50%? 10%? 0%? Or is it too low, and 99% would be a better goal?

Even the desired directionality for this is not entirely clear.

15. Cyber-physical systems

a. Dizzying increase in physical systems that have a significant software

component: medical devices, spacecraft and airplanes, appliances,

automobiles, bridges and buildings, telephones, and many more.

b. When these systems fail – consider the Denver airport, the Mars Polar

Lander, the Arianne V, and many more – they are generally reported as

software failures

c. In an important sense, this is accurate – specifically, in most cases, a

variant on the software could have eliminated the failure – however, at

the same time, these could be reported as hardware failure, as in most

cases, a variant of the hardware could also have eliminated the failure

16. Mars Polar Lander: $100M lost (plus opportunity costs)

“…the most likely cause of the failure of the mission was a software error that

mistakenly identified the vibration caused by the deployment of the lander's

legs as being caused by the vehicle touching down on the Martian surface,

resulting in the vehicle's descent engines being cut off while it was still 40

meters above the surface, rather than on touchdown as planned.” [Wikipedia]

17. Co-design decisions

a. Allocation of function to physical vs. software components is critically

important

b. In some domains these decisions come from those with more know-how

on the physical side

c. Even more commonly, these decisions are made with a clear view that

much complexity can and should be pushed into the software

d. Thus, it is tautological that software would cause more problems in

cyber-physical systems simply because it is “assigned” greater

complexity.

e. That is, Increasing the complexity of the software is (surely at times) a

fine decision – but one should not then later be surprised at increased

risks and costs

18. Physical components generally require a long lead time for design and

manufacture; for practical reasons, this is done concurrently with software

production

a. The physical components and their means of production necessarily and

practically become more stable and more costly to change over time

b. Changes made at later stages tend to be much more costly to fix

c. Just like software but even more costly!

d. If you really think software is too hard to change, try changing the

physical components instead!

19. Changes to software requirements

a. Unexpected shortcomings on the physical side are often handled by

changing the software requirements

b. This adds complexity and cost to the software because numerous design

and implementation decisions have already been made during the

concurrent development

c. To accommodate flaws in the engineering of the physical components,

even more complexity is injected into the software

d. “Better” software can generally overcome these flaws, but the need to do

so is induced by weaknesses on the physical side

20. Software is last

a. Testing software on the physical system instead of on simulators,

mockups, etc. may be cheaper and easier

b. When software is changed to overcome physical flaws, the software is

necessarily later

c. There is, quite reasonably, a perception that software is indeed “soft”

compare and thus it seems to be able to withstand changes until (and

often after) the last moment

d. But just because it is last doesn’t mean it is (entirely) at fault

21. Software: breaking [Moore’s] law” [Wikipedia]

a. “… exponentially improved hardware does not necessarily imply

exponentially improved software performance to go with it. The

productivity of software developers most assuredly does not increase

exponentially with the improvement in hardware, but by most measures

has increased only slowly and fitfully over the decades.”

b. The performance of software and software developers is compared to

transistors on an integrated circuit

c. What human activity has matched the growth of Moore’s Law?

d. Do we (or should we) compare the performance of trains to their tracks?

Of train designers to their trains?

e. What other technology has matched the growth of Moore’s Law?

Batteries, displays, ??? IC circuits are a (wonderful and probably) singular

technology

22. Blame isn’t the goal

a. Simply blaming software for the problems because it could fix the system

and because it was (naturally) last to be stabilized cannot easily lead us

to better solutions to costly fiascos

b. Not considering the role of software would also fail to lead to better

solutions

c. Of course we as software engineering researchers and engineers must

work hard to do better – indeed, much better

d. We must not, however, let the playing ground be set in a way that is not

helpful towards achieving critical goals

23. Value: missing from most discussions

24. Value is definitely hard to measure – but the world has surely agreed that

software has value, or else companies that produce and sell it would not exist!

a. Barry Boehm, Kevin Sullivan, Mary Shaw, and others have worked on

software engineering economics – this is crucial but very difficult

b. But we have to remember that the reason software is important is

because it provides value – real value to society, to the economy, to

people – and if it didn’t, nobody would care about cost, dependability,

etc.

25. Reprise: Standish ‘95: U.S. spends > US$250B annually on IT application

development

a. Software industry (2008, worldwide) US$304B DataMonitor via Wikipedia

b. Advertising industry (2009, Worldwide) US$445B

http://www.plunkettresearch.com/advertising%20branding%20market%2

0research/industry%20statistics

c. Travel industry (2008, Worldwide) US$944B Wikipedia

d. Porn industry (2004, Worldwide) US$57B

http://www.toptenreviews.com/2-6-04.html

e. Size is an inherently limited way to assess how well an industry is

doing…

26. Different kinds of question…that could and should drive software engineering

research

a. What should software systems cost to design, build, maintain? Can we

find a useful lower bound?

b. If we had infinite cycles to help software engineers, what problems would

still exist?

c. When changing software, we assume that new behavior can be arbitrarily

far from old behavior. What if we instead focused on the common-case –

a small ?

d. Under what conditions is it reasonable/unreasonable to characterize a

class of software systems as similar/dissimilar?

e. How should we legitimately assess and achieve important properties that

are – even if we dislike it – not binary, not efficiently computable, not

even precisely defined, etc.?

http://www.plunkettresearch.com/advertising%20branding%20market%20research/industry%20statistics
http://www.plunkettresearch.com/advertising%20branding%20market%20research/industry%20statistics
http://www.toptenreviews.com/2-6-04.html

