
3/29/2011

1

CSE503:

SOFTWARE ENGINEERING

INTRODUCTION

David Notkin

Spring 2011

Dogs must

be carried

Shoes must

be worn

[Michael Jackson]

My favorite software pundit

 Lady #1: “The food in

this place is

terrible.”

 Lady #2: “Yes, and in

such small portions.”

 This captures much of the
confusion about software:
it‘s broadly believed to be
of low quality, but there is a
voracious appetite for it

 Software engineering R&D
must consider both
dimensions

503 11sp © UW CSE • D. Notkin

2

When I say ―software engineering‖

503 11sp © UW CSE • D. Notkin

3

 …what do you think of?

 Shout it out! I‘ll write them on the board…

 (Can somebody write these down and mail them to

me?)

In the beginning

503 11sp © UW CSE • D. Notkin

4

csc.colstate.edu/bosworth/Talks/

WhyStudyAssemblyLanguage.doc

3/29/2011

2

A Story:

How much does software weigh?
5

503 11sp © UW CSE • D. Notkin

Back to the beginning

 Computers were a more precious resource than

were people – ―it‘s the money, honey‖

 Working in ways that optimized the use of the

computer, even at the cost of significant human

effort, was sensible

Aside: What was the most precious computing

resource – cycles, memory, bandwidth, …?

6

503 11sp © UW CSE • D. Notkin

Towards the present

503 11sp © UW CSE • D. Notkin

7

 1968 and 1969 NATO conferences on software

engineering

 Friedrich Bauer chaired it in 1968, with about 50 attendees

including Turing Award winners Alan Perlis, Edsger Dijkstra

and Peter Naur

 There were increasing difficulties and costs in

developing software – the ―human‖ vs. ―computer‖

tradeoff had to be reconsidered

Perlis epigrams (http://www.cs.yale.edu/quotes.html)

 “Syntactic sugar causes cancer of the semicolon.”

Quotations from the 1968 ―Highlights‖

The discussions

cover all aspects of

software including

 relation of software

to the hardware of

computers

 design of software

 production, or

implementation of

software

 distribution of

software

 service on software.

[T]he report also contains sections on …

 the problems of achieving sufficient reliability in the

data systems which are becoming increasingly

integrated into the central activities of modern

society

 the difficulties of meeting schedules and

specifications on large software projects

 the education of software (or data systems)

engineers

 the highly controversial question of whether

software should be priced separately from

hardware

8

503 11sp © UW CSE • D. Notkin

http://homepages.cs.ncl.ac.uk/brian.randell/NATO/
http://www.cs.yale.edu/quotes.html

3/29/2011

3

Quotations on growth rate of software

503 11sp © UW CSE • D. Notkin

9

 Helms: In Europe alone there are about 10,000 installed computers — this

number is increasing at a rate of anywhere from 25 per cent to 50 per

cent per year. The quality of software provided for these computers will

soon affect more than a quarter of a million analysts and programmers.

 David: …OS/360 cost IBM over $50 million dollars a year during its

preparation, and at least 5000 man-years‘ investment. TSS/360 is said to

be in the 1000 man-year category. It has been said, too, that development

costs for software equal the development costs for hardware in establishing

a new machine line.

 d‘Agapeyeff: In 1958 a European general purpose computer manufacturer

often had less than 50 software programmers, now they probably number

1,000-2,000 people; what will be needed in 1978?

 [This] growth rate was viewed with more alarm than pride

The ―usual‖ questions…

…that drive software engineering research

 Why does software cost so much?

 Why does software [testing | maintenance | …] cost so much?

 Why are there so many errors in software?

 Why do so many software projects fail?

 Why can‘t software be more like hardware or cars or buildings or
bridges or …?

 Why can‘t software engineering be more like real engineering?

 Where‘s Moore‘s Law for software?

 …

10

503 11sp © UW CSE • D. Notkin

Why does software

suck?

Standish Report 1995
http://www.spinroot.com/spin/Doc/course/Standish_Survey.htm

 U.S. spends more than $250 billion

annually on IT application

development

 The average cost of a development

project ranges from $434K (for

small) to $2.3M (for large) projects

 31.1% of projects will be canceled

before completion

 52.7% of projects will cost 189% of

their original estimates

 The failure to produce reliable

software to handle baggage at the

new Denver airport [cost] the city

$1.1 million per day

 ―A great many of these projects will

fail. Software development projects

are in chaos, and we can no longer

imitate the three monkeys -- hear no

failures, see no failures, speak no

failures.‖

 ―The cost of these failures and

overruns are just the tip of the

proverbial iceberg. The lost

opportunity costs are not

measurable, but could easily be in

the trillions of dollars.‖

 ―One just has to look to the City of

Denver to realize the extent of this

problem.‖

11

503 11sp © UW CSE • D. Notkin

―Software‘s Chronic Crisis‖ by Gibbs
Scientific American September 1994

―To veteran software developers, the Denver debacle

is notable only for its visibility. Studies have shown

that for every six new large-scale software systems

that are put into operation, two others are canceled.

The average software development project overshoots

its schedule by half; larger projects generally do

worse. And some three quarters of all large systems

are ‗operating failures‘ that either do not function as

intended or are not used at all.‖

12

503 11sp © UW CSE • D. Notkin

3/29/2011

4

Standish Group redux
http://www.infoq.com/articles/Interview-Johnson-Standish-CHAOS

 More recent Standish Group reports show some

improvement in the statistics

 The, however, reports are still clear about the

continuing presence of the software crisis.

 Jim Johnson, the founder and chairman of the

Standish Group, said in 2006: ―People know that

the more common scenario in our industry is still:

over budget, over time, and with fewer features

than planned.‖

13

503 11sp © UW CSE • D. Notkin

Software lifecycle costs

 ―The relative cost for
maintaining software and
managing its evolution now
represents more than 90% of
its total cost‖

 ―[A]lthough there has not been
much empirical research on
this particular area, the
magnitude of the maintenance
cost effects is clearly
identifiable.‖

 ―In a typical commercial
development organization, the
cost of providing [assurances
of functional and non-
functional performance] via
appropriate debugging,
testing, and verification
activities can easily range
from 50 to 75 percent of the
total development cost.‖

503 11sp © UW CSE • D. Notkin

14

Evolution/maintenance  90%
http://www.cs.jyu.fi/~koskinen/smcosts.htm

Testing/verification  50-75%
Hailpern & Santhanam, IBM Sys. Journal 2002

So, these data show that…

 …software costs

too much on an

absolute basis

 …software

lifecycle phases

cost too much on

a relative basis

 …software

projects are

cancelled too

often

"When you can measure what you are

speaking about and express it in numbers,

you know something about it; but when you

cannot measure it, when you cannot express

it in numbers, your knowledge is of a

meagre and unsatisfactory kind: it may be

the beginning of knowledge but you have

scarcely, in your thoughts, advanced to the

stage of science." —Lord Kelvin

15

503 11sp © UW CSE • D. Notkin

In a nutshell: qualitative assessment is an

―absolute zero‖

But how do we measure ―too‖?

503 11sp © UW CSE • D. Notkin

16

…software costs too much…, software lifecycle phases cost

too much …, software projects are cancelled too often…

• We don‘t – we accept that we‘re just too X and we

should just get better at X

• What would be ideal or even acceptable absolute

costs? Relative lifecycle costs? Project cancellation

rates?

• If you believe firmly in measurement, then this should

be as unsatisfactory as any other kind of lack of

measurement

http://www.cs.jyu.fi/~koskinen/smcosts.htm

3/29/2011

5

Per-phase ―pie‖ charts:

what do they have in common?

503 11sp © UW CSE • D. Notkin

17

http://www.softwaremetrics.com/Articles/es

timating.htm http://clarityincode.com/software-maintenance/

http://thibautvs.com/blog/?tag=maintenance

www.softmake.com.au/softwareDevelopmentMethodology/rapidDevelopmentSystem

They total 100% … and they

always will!

 A great way to compare the

costs of phases

 A terrible way to assess costs in

any absolute sense

Testing and evolution

503 11sp © UW CSE • D. Notkin

18

 Why might we care about what ―too‖ means?

 Is 50-75% too high for testing? What would be
acceptable? Why? Is 0% a good goal? Are there
benchmarks from other engineering disciplines and,
if so, should we believe they may be analogous?

 Is 90% for evolution and maintenance too high?
What would be a good goal? 50%? 10%? 0%?
Or is it too low, and 99% would be a better goal?
Even the desired directionality for this is not entirely
clear.

Cyber-physical systems

 Dizzying increase in physical systems that have a

significant software component: medical devices,

spacecraft and airplanes, appliances, automobiles,

bridges and buildings, telephones, and many more.

 When these systems fail – consider the Denver airport,

the Mars Polar Lander, the Arianne V, and many more –

they are generally reported as software failures

 In an important sense, this is accurate – specifically, in

most cases, a variant on the software could have

eliminated the failure.

19

503 11sp © UW CSE • D. Notkin

Mars Polar Lander:
$100M lost (plus opportunity costs)

 ―…the most likely cause of the failure of the mission

was a software error that mistakenly identified the

vibration caused by the deployment of the lander's

legs as being caused by the vehicle touching down

on the Martian surface, resulting in the vehicle's

descent engines being cut off while it was still 40

meters above the surface, rather than on touchdown

as planned.‖ [Wikipedia]

20

503 11sp © UW CSE • D. Notkin

http://www.softwaremetrics.com/Articles/estimating.htm
http://www.softwaremetrics.com/Articles/estimating.htm
http://www.softwaremetrics.com/Articles/estimating.htm
http://www.softwaremetrics.com/Articles/estimating.htm
http://clarityincode.com/software-maintenance/
http://clarityincode.com/software-maintenance/
http://clarityincode.com/software-maintenance/
http://clarityincode.com/software-maintenance/
http://www.softwaremetrics.com/Articles/estimating.htm
http://thibautvs.com/blog/?tag=maintenance
http://thibautvs.com/blog/?tag=maintenance
http://clarityincode.com/software-maintenance/
http://www.softmake.com.au/softwareDevelopmentMethodology/rapidDevelopmentSystem
http://www.softmake.com.au/softwareDevelopmentMethodology/rapidDevelopmentSystem
http://thibautvs.com/blog/?tag=maintenance

3/29/2011

6

Co-design decisions

503 11sp © UW CSE • D. Notkin

21

 Allocation of function to physical vs. software components is
critically important

 In some domains these decisions come from those with more
know-how on the physical side

 Even more commonly, these decisions are made with a clear
view that much complexity can and should be pushed into
the software

 Thus, it is tautological that software would cause more problems in
cyber-physical systems simply because it is ―assigned‖ greater
complexity.

 That is, Increasing the complexity of the software is (surely
at times) a fine decision – but one should not then later be
surprised at increased risks and costs

Lead time for physical manufacturing

 Physical components generally require a long lead time
for design and manufacture; for practical reasons, this is
done concurrently with software production

 The physical components and their means of production
necessarily and practically become more stable and
more costly to change over time

 Changes made at later stages tend to be much more costly
to fix

 Just like software  but even more costly!

 If you really think software is too hard to change, try
changing the physical components instead!

22

503 11sp © UW CSE • D. Notkin

Changes to software requirements

503 11sp © UW CSE • D. Notkin

23

 So unexpected shortcomings on the physical side are
often handled by changing the software requirements

 This adds complexity and cost to the software because
numerous design and implementation decisions have
already been made during the concurrent development

 To accommodate flaws in the engineering of the
physical components, even more complexity is injected
into the software

 ―Better‖ software can generally overcome these flaws,
but the need to do so is induced by weaknesses on the
physical side

Software is last

 Testing software on the physical system instead of on

simulators, mockups, etc. may be cheaper and easier

 When software is changed to overcome physical flaws,

the software is necessarily later

 There is, quite reasonably, a perception that software is

indeed ―soft‖ compare and thus it seems to be able to

withstand changes until (and often after) the last

moment

 But just because it is last doesn‘t mean it is (entirely) at

fault

24

503 11sp © UW CSE • D. Notkin

3/29/2011

7

Software: breaking [Moore‘s] law‖

[Wikipedia]

―… exponentially improved

hardware does not

necessarily imply

exponentially improved

software performance to go

with it. The productivity of

software developers most

assuredly does not increase

exponentially with the

improvement in hardware, but

by most measures has

increased only slowly and

fitfully over the decades.‖

 The performance of software and

software developers is compared to

transistors on an integrated circuit

 What human activity has matched

the growth of Moore‘s Law?

 Do we (or should we) compare the

performance of trains to their tracks?

Of train designers to their trains?

 What other technology has

matched the growth of Moore‘s

Law? Batteries, displays, ??? IC

circuits are a (wonderful and

probably) singular technology

25

 Would you rather

take the bus to work

or your lunch?

 Would you rather be

in love or in Tucson?

Blame isn‘t the goal

 Simply blaming software for the problems because
it could fix the system and because it was (naturally)
last to be stabilized cannot easily lead us to better
solutions to costly fiascos

 Of course we as software engineering researchers
and engineers must work hard to do better –
indeed, much better

 We must not, however, let the playing ground be set
in a way that is not helpful towards achieving
critical goals

26

503 11sp © UW CSE • D. Notkin

Value: missing from most discussions

503 11sp © UW CSE • D. Notkin

27

 Value is definitely hard to measure – but the world has
surely agreed that software has value, or else
companies that produce and sell it would not exist!

 We need much more work in this area

 Barry Boehm, Kevin Sullivan, Mary Shaw, and others have
worked on software engineering economics – this is crucial
but very difficult

 But we have to remember that the reason software is
important is because it provides value – real value to
society, to the economy, to people – and if it didn‘t,
nobody would care about cost, dependability, etc.

Reprise: Standish ‗95: U.S. spends > US$250B

annually on IT application development

 Software industry (2008, worldwide) US$304B
DataMonitor via Wikipedia

 Advertising industry (2009, Worldwide) US$445B
http://www.plunkettresearch.com/advertising%20branding%20market%20researc

h/industry%20statistics

 Travel industry (2008, Worldwide) US$944B Wikipedia

 Porn industry (2004, Worldwide) US$57B
http://www.toptenreviews.com/2-6-04.html

 Size is an inherently limited way to assess how well an

industry is doing…

28

503 11sp © UW CSE • D. Notkin

http://www.toptenreviews.com/2-6-04.html
http://www.plunkettresearch.com/advertising branding market research/industry statistics
http://www.plunkettresearch.com/advertising branding market research/industry statistics
http://www.toptenreviews.com/2-6-04.html
http://www.toptenreviews.com/2-6-04.html
http://www.toptenreviews.com/2-6-04.html
http://www.toptenreviews.com/2-6-04.html
http://www.toptenreviews.com/2-6-04.html
http://www.toptenreviews.com/2-6-04.html

3/29/2011

8

Different kinds of questions…

…that could and should drive software engineering research

 What should software systems cost to design, build, maintain? Can we find a

useful lower bound?

 If we had infinite cycles to help software engineers, what problems would still

exist?

 When changing software, we assume that new behavior can be arbitrarily

far from old behavior. What if we instead focused on the common-case – a

small ?

 Under what conditions is it reasonable/unreasonable to characterize a class

of software systems as similar/dissimilar?

 How should we legitimately assess and achieve important properties that are

– even if we dislike it – not binary, not efficiently computable, not even

precisely defined, etc.?

 …

29

503 11sp © UW CSE • D. Notkin

Coarse course expectations…

503 11sp © UW CSE • D. Notkin

30

Overall objective – allow you to focus
on the subareas and dimensions of software engineering

that you find most interesting and/or most beneficial to you

 ―History‖ assignments (#1 and #2)

 Project #1: Tool use and evaluation (research) or software
building (development)

 Project #2: Primary research project or secondary research
project

 Some assigned work TBA

 Course participation

 No examinations

Just to show some awareness…

503 11sp © UW CSE • D. Notkin

31

http://news.softpedia.com/news/SCADA-Software-Increasingly-Under-Scrutiny-by-Security-Researchers-191525.shtml

―Supervisory control and data acquisition (SCADA) software is responsible for

monitoring and controlling equipment in industrial facilities, including oil and gas

refineries, power and water processing plants, factories, etc.

 Attacks against SCADA software moved from theoretical to practical last year with

the discovery of Stuxnet, a highly sophisticated industrial espionage malware whose

purpose was to destroy uranium enrichment centrifuges at the Iran's Natanz nuclear

plant. …

 [Researcher] Rubén Santamarta released an exploit for a remote code execution

vulnerability affecting a Web-based SCADA product called BroadWin WebAccess.

 His decision to go public was the result of the vendor denying the existence of a

problem. ‗I contacted ICS-CERT [Industrial Control Systems Cyber Emergency Response

Team] to coordinate with Advantech but the vendor denied having a security flaw. So

guys, the exploit I'm releasing does not exist. All is product of your mind,‘ the researcher

says ironically. …‖

http://news.softpedia.com/news/SCADA-Software-Increasingly-Under-Scrutiny-by-Security-Researchers-191525.shtml
http://news.softpedia.com/news/SCADA-Software-Increasingly-Under-Scrutiny-by-Security-Researchers-191525.shtml
http://news.softpedia.com/news/SCADA-Software-Increasingly-Under-Scrutiny-by-Security-Researchers-191525.shtml
http://news.softpedia.com/news/SCADA-Software-Increasingly-Under-Scrutiny-by-Security-Researchers-191525.shtml
http://news.softpedia.com/news/SCADA-Software-Increasingly-Under-Scrutiny-by-Security-Researchers-191525.shtml
http://news.softpedia.com/news/SCADA-Software-Increasingly-Under-Scrutiny-by-Security-Researchers-191525.shtml
http://news.softpedia.com/news/SCADA-Software-Increasingly-Under-Scrutiny-by-Security-Researchers-191525.shtml
http://news.softpedia.com/news/SCADA-Software-Increasingly-Under-Scrutiny-by-Security-Researchers-191525.shtml
http://news.softpedia.com/news/SCADA-Software-Increasingly-Under-Scrutiny-by-Security-Researchers-191525.shtml
http://news.softpedia.com/news/SCADA-Software-Increasingly-Under-Scrutiny-by-Security-Researchers-191525.shtml
http://news.softpedia.com/news/SCADA-Software-Increasingly-Under-Scrutiny-by-Security-Researchers-191525.shtml
http://news.softpedia.com/news/SCADA-Software-Increasingly-Under-Scrutiny-by-Security-Researchers-191525.shtml
http://news.softpedia.com/news/SCADA-Software-Increasingly-Under-Scrutiny-by-Security-Researchers-191525.shtml
http://news.softpedia.com/news/SCADA-Software-Increasingly-Under-Scrutiny-by-Security-Researchers-191525.shtml
http://news.softpedia.com/news/SCADA-Software-Increasingly-Under-Scrutiny-by-Security-Researchers-191525.shtml
http://news.softpedia.com/news/SCADA-Software-Increasingly-Under-Scrutiny-by-Security-Researchers-191525.shtml
http://news.softpedia.com/news/SCADA-Software-Increasingly-Under-Scrutiny-by-Security-Researchers-191525.shtml

