CSE503:
SOFTWARE ENGINEERING

4/26/2011

Today

11 One brief project #1 description

0 Finish software design introduction
Open implementation
Layering/uses relation

11 Some consequences of reality in design

503 11sp © UW CSE * D. Notkin

Reality: some consequences

o1 One commonly stated objective of good design is
the ability to reason about the software system
It is not always clear if this means reasoning about the
structure, or reasoning about the behavior, or (most
likely) both
0 Top-down design, ADT-based design, information
hiding, layering all — at least in principle — help to
some degree with reasoning
01 One reason is that there is, or there can be, a clear
specification of what the system is intended to do

503 11sp © UW CSE * D. Notkin

Claim

o | claim that the basis for reasoning is in large part based
on the fact that in these approaches the names relation
and the invokes relation are closely related

0 That is, to invoke a part of a program a second part of
the program must know the first part’'s name

o With a specification (formal or otherwise) of the second
part’s interface, the first part can invoke it with
confidence

o This has much in common with the strong relationship
between static structure and dynamic behavior that
Dijkstra advocated

503 11sp © UW CSE * D. Notkin




4/26/2011

From Lecture #2

Programming languages

Dijkstra’s notion of structured control flow easing
reasoning is completely rational
At the same time, the “real” world of software has
clearly decided that constructs that help them in their
work seem to be more important than keeping a close
connection between the static program and dynamic
behaviors
Examples include exceptions, event-based programming,
aspect-oriented programming, and more
This leaves interesting research about how to improve
reasoning in the face of constructs like these

A look at event-based programming

One approach that is widely used and difficult to
reason about is event-based programming
Roughly equivalent to interrupts at the architectural and
operating systems levels
The key: names and invokes are decoupled (to
varying degrees)

503 11sp © UW CSE * D. Notkin

The broadcast analogy

...has a flaw: people listen to the radio or watch
the TV but (for now, at least) don’t fundamentally
change anything going on at the source of the
broadcast

But when a programming event is raised, the
computation that is invoked may well change the
behavior of the component that invoked the event

But that component doesn’t know what components
are invoked, or what they do

503 11sp © UW CSE * D. Notkin

A whiteboard example

A set of vertices and a set of edges
A desired constraint between vertices and edges —
together they form a graph

That is, no edge is included the edge set that does not have
the corresponding vertices in the vertex set

Lots of policies to achieve this constraint

Direct access to the vertex and edge sets complicate
maintenance of the constraint

Possible extensions include
a lazy bit that allows the constraint to be violated
a count of the number of vertices

503 11sp © UW CSE * D. Notkin




Trade-off between flexibility and
reasoning

At least it seems to be, not only for event-based
programming, but also for exceptions, etc.

We’'ll look at a broader approach — with some
similar tradeoffs — next time when we talk about
aspect-oriented programming

503 11sp © UW CSE * D. Notkin

4/26/2011



