
4/26/2011

1

CSE503:

SOFTWARE ENGINEERING
DESIGN II

David Notkin

Spring 2011

Today

 One brief project #1 description

 Finish software design introduction

 Open implementation

 Layering/uses relation

 Some consequences of reality in design

503 11sp © UW CSE • D. Notkin

2

Reality: some consequences

503 11sp © UW CSE • D. Notkin

3

 One commonly stated objective of good design is
the ability to reason about the software system

 It is not always clear if this means reasoning about the
structure, or reasoning about the behavior, or (most
likely) both

 Top-down design, ADT-based design, information
hiding, layering all – at least in principle – help to
some degree with reasoning

 One reason is that there is, or there can be, a clear
specification of what the system is intended to do

Claim

503 11sp © UW CSE • D. Notkin

4

 I claim that the basis for reasoning is in large part based
on the fact that in these approaches the names relation
and the invokes relation are closely related

 That is, to invoke a part of a program a second part of
the program must know the first part’s name

 With a specification (formal or otherwise) of the second
part’s interface, the first part can invoke it with
confidence

 This has much in common with the strong relationship
between static structure and dynamic behavior that
Dijkstra advocated

4/26/2011

2

From Lecture #2
5

A look at event-based programming

503 11sp © UW CSE • D. Notkin

6

 One approach that is widely used and difficult to

reason about is event-based programming

 Roughly equivalent to interrupts at the architectural and

operating systems levels

 The key: names and invokes are decoupled (to

varying degrees)

The broadcast analogy

503 11sp © UW CSE • D. Notkin

7

 …has a flaw: people listen to the radio or watch

the TV but (for now, at least) don’t fundamentally

change anything going on at the source of the

broadcast

 But when a programming event is raised, the

computation that is invoked may well change the

behavior of the component that invoked the event

 But that component doesn’t know what components

are invoked, or what they do

A whiteboard example

503 11sp © UW CSE • D. Notkin

8

 A set of vertices and a set of edges

 A desired constraint between vertices and edges –
together they form a graph

 That is, no edge is included the edge set that does not have
the corresponding vertices in the vertex set

 Lots of policies to achieve this constraint

 Direct access to the vertex and edge sets complicate
maintenance of the constraint

 Possible extensions include

 a lazy bit that allows the constraint to be violated

 a count of the number of vertices

4/26/2011

3

Trade-off between flexibility and

reasoning

503 11sp © UW CSE • D. Notkin

9

 At least it seems to be, not only for event-based

programming, but also for exceptions, etc.

 We’ll look at a broader approach – with some

similar tradeoffs – next time when we talk about

aspect-oriented programming

