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 Comments or questions? 

Today 

503 11sp © UW CSE  • D. Notkin 

3 

 Some basics of software testing 

 Characterizations of testing 

 Terminology 

 Basic approaches 

 Mutation testing 

 Random (feedback-directed) testing 

 Next week: symbolic evaluation, concolic evaluation, 
automatic test generation and related topics – in 
some depth – many of the techniques used by 
Andreas (and others!) 

An example from Bach 

 Asks students to “try long inputs” for a test requiring 

an integer 

 Interesting lengths are…? 
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Enter an integer: 
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Key boundaries: most not tried 

 16 digits+: loss of mathematical 

precision 

 23+: can‟t see all of the input 

 310+: input not understood as a 

number 

 1000+: exponentially increasing 

freeze when navigating to the 

end of the field by pressing 

<END> 

 23,829+: all text in field turns 

white 

 2,400,000: reproducible crash 

 Why more not tried? 

 Seduced by what‟s visible 

 Think they need the 

specification to tell them the 

maximum – and if they have 

one, stop there 

 Satisfied by first boundary 

 Use linear lengthening 

strategy 

 Think “no one would do that” 
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Free association: “software testing” 
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 Shout it out! 

 

 

 

 

 

 

 

 Have any of you worked as a software tester? 

Many views of testing 
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 Showing you did something right vs. showing 

somebody else did something wrong 

 Getting useful software into users‟ hands vs. 

stopping buggy software from getting into users‟ 

hands 

 Finding defects vs. building confidence in properties 

 Finding new bugs vs. making sure the rest of the 

team can make progress 

 … 

Steve McConnell 
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Testing by itself does not improve software quality. Test 
results are an indicator of quality, but in and of 
themselves, they don't improve it. Trying to improve 
software quality by increasing the amount of testing is like 
trying to lose weight by weighing yourself more often. 
What you eat before you step onto the scale determines 
how much you will weigh, and the software development 
techniques you use determine how many errors testing will 
find. If you want to lose weight, don't buy a new scale; 
change your diet. If you want to improve your software, 
don't test more; develop better. 
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Cem Kaner & James Bach 
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 “Testing is an empirical investigation conducted to 

provide stakeholders with information about the 

quality of the software under test.” 

 “Testing is questioning a product in order to 

evaluate it. 

 “The „questions‟ consist of ordinary questions about the 

idea or design of the product, or else questions implicit 

in the various ways of configuring and operating the 

product.   The product „answers‟ by exhibiting behavior, 

which the tester observes and evaluates.” 
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Herb Simon (via wikipedia) 
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 “Satisficing … is a decision-making strategy which attempts 
to meet criteria for adequacy, rather than to identify an 
optimal solution. A satisficing strategy may often be (near) 
optimal if the costs of the decision-making process itself, 
such as the cost of obtaining complete information, are 
considered in the outcome calculus.” 

 “[Simon] pointed out that human beings lack the cognitive 
resources to maximize: we usually do not know the relevant 
probabilities of outcomes, we can rarely evaluate all 
outcomes with sufficient precision, and our memories are 
weak and unreliable. A more realistic approach to 
rationality takes into account these limitations: This is called 
bounded rationality.” 
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Quotations 

 “Beware of bugs in the above code; I have only proved 

it correct, not tried it.” – D. Knuth 

 “Program testing can be used to show the presence of 

bugs, but never to show their absence!” –E. Dijkstra 

 “It is not a test that finds a bug but it is a human that 

finds a bug and a test plays a role in helping the 

human find it.” – P. Soundarajan 

  

 

MJ quotation? 
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Terminology 
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 Failure – an externally-visible outcome that is 
inconsistent with the specification 

 This generally includes program crashes, exceptions that 
aren‟t handled, etc. 

 This also generally includes inconsistencies with the implicit 
specification 

 Fault – an inconsistent internal state 

 These may or may not lead to failures 

 Defect – the piece of code that leads to a failure or 
fault 

 Error – the human misunderstanding that led to the 
defect 
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Tests vs. test inputs 
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 A test defines both inputs and expected outputs 

 The expected output for a test is usually called an oracle 

 A test input defines only the inputs 

 These can be useful in identifying failures such as crashes – 

there is no output to compare to an oracle 

 They can be useful in assessing coverage properties 

 

 Like most of the world, even in published papers, I may 

not be very careful about this distinction – but push if 

it‟s confusing! 

Do tests pass or fail? 
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 Does a test where the output matches the oracle 

pass or fail? 

 Does a test input that terminates normally pass or 

fail? 

Some key questions 
15 

Program under Test 

T1 

T2 

… 

TN 

T1  X 

T2  √ 

… 

TN  X 

Coverage information 

Where 

do the 

tests 

come 

from? 

Where 

do the 

results 

tell us? 

Are 

there 

enough 

tests? 

Is the program 

source visible?  

(Any other 

artifacts?) 

Do all tests 

have to be run?  

Can they be?  

If not, what to 

do? 

What should be 

done when the 

program changes? 

… 

Others? Testing theory 
16 

 Plenty of negative results 

 Nothing guarantees correctness 

 Statistical confidence is prohibitively expensive 

 Being systematic may not improve fault detection (as 

compared to simple random testing) 

 “So what did you expect, decision procedures for 

undecidable questions?” – M. Young 
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When can we stop? 

 Ideally: adequate testing ensures some property 

(proof by cases) 

 Goodenough & Gerhart, Weyuker & Ostrand 

 In reality, as impractical as other program proofs 

 Practical adequacy criteria are really 

“inadequacy” criteria 

 If no case from class X has been chosen, surely more 

testing is needed … 

17 
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Partition testing 

 Basic idea: divide program input space into (quasi-) 

equivalence classes, selecting at least one test case 

from each class 

 The devil is in the details – and there are many! 
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Structural coverage testing 

 (In)adequacy criteria – if significant parts of the 
program structure are not tested, testing is surely 
inadequate 

 Control flow coverage criteria 

 Statement (node, basic block) coverage 

 Branch (edge) and condition coverage 

 Data flow (syntactic dependency) coverage 

 Others… 

 “Attempted compromise between the impossible 
and the inadequate” 

19 
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Statement coverage 

 Unsatisfying in trivial 

cases 

if x > y then 

 max := x 

else 

 max :=y 

endif 

 

 

if x < 0 then 

 x := -x 

endif 

z := x; 

20 
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Edge coverage 

 Covering all basic 
blocks (nodes, 
statements) would not 
require edge ac to be 
covered 

 Edge coverage 
requires all control 
flow graph edges to 
be coverage by at 
least one test  

21 

a 

b 

c 

d 

e 

f 
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Condition coverage 

 How to handle compound conditions? 
 if (p != NULL) && (p->left < p->right) … 

 Is this a single conditional in the CFG?  How do you 

handle short-circuit conditionals? 

 Condition coverage treats these as separate conditions 

and requires tests that handle all combinations 

 Modified Condition/Decision Coverage (MCDC) 

 Sufficient test cases to verify whether every condition can 

affect the result of the control structure 

 Required for aviation software by RCTA/DO-178B 
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Path coverage 

 Edge coverage is in some sense very static 

 Edges can be covered without covering actual paths 

(sequences of edges) that the program may execute 

 All paths in a program may not be executable 

 Writing tests for these is hard  

 Not shipping a program until these paths are executed does 

not provide a competitive advantage  
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Path coverage 

 The test suite 
{<x = 0, z = 1>, 

<x = 1, z = 3>} 

executes all edges, but… 

 

if x ≠ 0 then 

y := 5; 

else 

 z := z - x; 

endif; 

if z > 1 then 

 z := z / x; 

else 

 z := 0; 

end 
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Loop coverage 

 Loop coverage also makes path coverage complex 

 Each added iteration through a loop introduces a new 

path 

 Since we can‟t in general bound the number of loop 

iterations, we often partition the paths for testing 

purposes 

 Never, once, many times … 

 10 is a constant often used as a representation of “many” 
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Data flow coverage criteria 

 Idea: an untested def-use pair 

could hide an erroneous 

computation 

 The increment of y has two 

reaching definitions 

 The assignment to z has two 

reaching definitions for each 

of x and y 

 There are many variants on this 

kind of approach 

26 

x := 7 

y := x 

y := y+1 

z := x+y 
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Structural coverage: challenges 

 Interprocedural coverage 

 Interprocedural dataflow, call-graph coverage, etc. 

 Regression testing 

 How to test version P‟ given that you‟ve tested P 

 Late binding in OO – coverage of polymorphism 

 Infeasible behaviors: arises once you get past the 

most basic coverage criteria 

27 
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Infeasibility problem 

 Syntactically indicated behaviors that are not 
semantically possible 

 Thus can‟t achieve “adequate” behavior of test 
suites 

 Could 

 Manually justify each omission 

 Give adequacy “scores” – for example, 95% 
statement, 80% def-use, … 

 [Can be deceptive, of course] 

 Fault-injection is another approach to infeasibility 
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Mutation testing 
29 

 Mutation testing is an approach to evaluate – and 

to improve – test suites 

 Basic idea 

 Create small variants of the program under test 

 If the tests don‟t exhibit different behavior on the 

variants then the test suite is not sufficient 

 The material on the following slides is due heavily 

to Pezzè and Young on fault-based testing 
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Estimation 

 Given a big bowl of marbles, how can we estimate 

how many? 

 Can‟t count every marble individually 

30 
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What if I also… 

 … have a bag of 100 other marbles of the same 

size, but a different color (say, black) and mix them 

in? 

 Draw out 100 marbles at random and find 20 of 

them are black 

 How many marbles did we start with? 

 

31 
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Estimating test suite quality 

 Now take a program with bugs and create 100 

variations each with a new and distinct bug 

 Assume the new bugs are exactly like real bugs in 

every way 

 Run the test suite on all 100 new variants 

 ... and the tests reveal 20 of the bugs  

 … and the other 80 program copies do not fail 

 What does this tell us about the test suite? 

32 
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Basic Assumptions 

 The idea is to judge effectiveness of a test suite in 

finding real faults by measuring how well it finds 

seeded fake faults 

 Valid to the extent that the seeded bugs are 

representative of real bugs: not necessarily 

identical but the differences should not affect the 

selection 

33 
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Mutation testing 

 A mutant is a copy of a program with a mutation: a 
syntactic change that represents a seeded bug 

 Ex: change (i < 0) to (i <= 0) 

 Run the test suite on all the mutant programs 

 A mutant is killed if it fails on at least one test case 

 That is, the mutant is distinguishable from the original 
program by the test suite, which adds confidence about 
the quality of the test suite 

 If many mutants are killed, infer that the test suite is 
also effective at finding real bugs 

34 
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Mutation testing assumptions 

 Competent programmer hypothesis: programs are 

nearly correct  

 Real faults are small variations from the correct 

program and thus mutants are reasonable models of 

real buggy programs 

 Coupling effect hypothesis: tests that find simple 

faults also find more complex faults 

 Even if mutants are not perfect representatives of real 

faults, a test suite that kills mutants is good at finding 

real faults, too 

 

35 
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Mutation Operators 

 Syntactic change from legal program to legal program 
and are thus specific to each programming language 

 Ex: constant for constant replacement 

 from (x < 5) to (x < 12) 

 Maybe select from constants found elsewhere in program 
text 

 Ex: relational operator replacement 

 from (x <= 5) to (x < 5) 

 Ex: variable initialization elimination 

 from int x =5; to int x; 

36 
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Live mutants scenario 

 Create 100 mutants from a program  

 Run the test suite on all 100 mutants, plus the original 

program  

 The original program passes all tests  

 94 mutant programs are killed (fail at least one test) 

 6 mutants remain alive 

 What can we learn from the living mutants? 

37 
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How mutants survive 

 A mutant may be equivalent to the original program 

 Maybe changing (x < 0) to (x <= 0) didn‟t change 

the output at all!  

 The seeded “fault” is not really a “fault” – determining this 

may be easy or hard or in the worst case undecidable  

 Or the test suite could be inadequate 

 If the mutant could have been killed, but was not, it indicates 

a weakness in the test suite 

 But adding a test case for just this mutant is likely a bad 

idea – why? 

38 
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Weak mutation: a variation 
39 

 There are lots of mutants – the number of mutants 
grows with the square of program size 

 Running each test case to completion on every mutant is 
expensive 

 Instead execute a “meta-mutant” that has many of the 
seeded faults in addition to executing the original 
program 

 Mark a seeded fault as “killed” as soon as a difference in 
an intermediate state is found – don‟t wait for program 
completion 

 Restart with new mutant selection after each “kill” 
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Statistical Mutation: another variation 
40 

 Running each test case on every mutant is 

expensive, even if we don‟t run each test case 

separately to completion 

 Approach: Create a random sample of mutants 

 May be just as good for assessing a test suite 

 Doesn‟t work if test cases are designed to kill particular 

mutants 
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In real life ... 

 Fault-based testing is a widely used in semiconductor 
manufacturing 

 With good fault models of typical manufacturing faults, e.g., 
“stuck-at-one” for a transistor 

 But fault-based testing for design errors – as in software – 
is more challenging 

 Mutation testing is not widely used in industry 

 But plays a role in software testing research, to compare 
effectiveness of testing techniques 

 Some use of fault models to design test cases is 
important and widely practiced 

41 
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Summary 

 If bugs were marbles ...  

 We could get some nice black marbles to judge the 
quality of test suites 

 Since bugs aren‟t marbles ...  

 Mutation testing rests on some troubling assumptions 
about seeded faults, which may not be statistically 
representative of real faults 

 Nonetheless ...  

 A model of typical or important faults is invaluable 
information for designing and assessing test suites 

42 
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Feedback-directed Random 
Test Generation 

(to appear in ICSE 2007) 
 

 
       Carlos Pacheco                     Shuvendu Lahiri 

        Michael Ernst                         Thomas Ball 

 
               MIT                            Microsoft Research 

 
 

 

January 19, 2007 

Random testing 
 

 Select inputs at random from a program’s input space 

 Check that program behaves correctly on each input 

 

 An attractive error-detection technique 

 Easy to implement and use 

 Yields lots of test inputs 

 Finds errors 

 Miller et al. 1990: Unix utilities 

 Kropp et al.1998: OS services 

 Forrester et al. 2000: GUI applications 

 Claessen et al. 2000: functional programs 

 Csallner et al. 2005, 

 Pacheco et al. 2005: object-oriented programs 

 Groce et al. 2007: flash memory, file systems 
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Evaluations of random testing 

 Theoretical work suggests that random testing is 
as effective as more systematic input generation 
techniques                            (Duran 1984, Hamlet 1990) 

and they use completely undirected random test generation. 

 

 Some empirical studies suggest systematic is more 
effective than random 

 Ferguson et al. 1996: compare with chaining 

 Marinov et al. 2003: compare with bounded exhaustive 

 Visser et al. 2006: compare with model checking and 

symbolic execution 

 

 
Studies are performed on small benchmarks, 

they do not measure error revealing effectiveness, 
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Contributions 

 We propose feedback-directed random test 
generation 

 Randomized creation of new test inputs is guided by 

feedback about the execution of previous inputs 

 Goal is to avoid redundant and illegal inputs 

 

 Empirical evaluation 

 Evaluate coverage and error-detection ability on a large 
number of widely-used, well-tested libraries (780KLOC) 

 Compare against systematic input generation 

 Compare against undirected random input generation 
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Random testing: pitfalls 

1. Useful test 
Set t = new HashSet(); 
s.add(“hi”); 

assertTrue(s.equals(s)); 

3. Useful test 
Date d = new Date(2006, 2, 14); 
assertTrue(d.equals(d)); 

2. Redundant test 
Set t = new HashSet(); 
s.add(“hi”); 

s.isEmpty(); 
assertTrue(s.equals(s)); 

4. Illegal test 
Date d = new Date(2006, 2, 14); 
d.setMonth(-1); // pre: argument >= 0 

assertTrue(d.equals(d)); 
 
5. Illegal test 

Date d = new Date(2006, 2, 14); 
d.setMonth(-1); 
d.setDay(5); 

assertTrue(d.equals(d)); 
 

 
 do not output 

do not even create 
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Feedback-directed random 
test generation 

 Build test inputs incrementally 

 New test inputs extend previous ones 

 In our context, a test input is a method sequence 

 As soon as a test input is created, execute it 

 Use execution results to guide generation 

 away from redundant or illegal method sequences 

 towards sequences that create new object states 
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Technique input/output 

 Input: 

 classes under test 

 time limit 

 set of contracts 

 Method contracts (e.g. “o.hashCode() throws no exception”) 

 Object invariants  (e.g. “o.equals(o) == true”) 

 Output: contract-violating test cases. Example: 

HashMap h = new HashMap(); 
Collection c = h.values(); 
Object[] a = c.toArray(); 

LinkedList l = new LinkedList(); 
l.addFirst(a); 
TreeSet t = new TreeSet(l); 

Set u = Collections.unmodifiableSet(t); 
assertTrue(u.equals(u)); fails when executed 

no contracts 
violated 
up to last 
method call 
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1. Seed components 
components = {                                            ...   } 

2. Do until time limit expires: 

a. Create a new sequence 

i. Randomly pick a method call m(T1...Tk)/Tret  

ii. For each input parameter of type Ti, randomly pick a 

sequence Si from the components that constructs an object 
vi of type Ti 

iii. Create new sequence Snew = S1; ... ; Sk ; Tret vnew = m(v1...vk); 

iv. if Snew was previously created (lexically), go to i 

 

b. Classify the new sequence Snew 

a. May discard, output as test case, or add to components 

 

Technique 

int i = 0; boolean b = false; 
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Classifying a sequence 

execute and 
check 

contracts 

components 

 
contract- 
violating 
test case 

contract 
violated? 

minimize 
sequence 

yes 

sequence 
redundant? 

no 

yes 

discard 
sequence 

start 

no 
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Redundant sequences 

 During generation, maintain a set of all 
objects created. 

 A sequence is redundant if all the objects 
created during its execution are members of 
the above set (using equals to compare) 

 Could also use more sophisticated state 
equivalence methods 

 E.g. heap canonicalization 
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Coverage achieved by Randoop 

data structure time (s) branch 

cov. 

Bounded stack (30 LOC) 1 100% 

Unbounded stack (59 LOC) 1 100% 

BS Tree (91 LOC) 1 96% 

Binomial heap (309 LOC) 1 84% 

Linked list (253 LOC) 1 100% 

Tree map (370 LOC) 1 81% 

Heap array (71 LOC) 1 100% 

 Comparable with exhaustive/symbolic techniques  
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Predicate coverage 

Binary tree

52
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Evaluation: summary 

 Feedback-directed random test generation: 

 Is effective at finding errors 

 Discovered several errors in real code (e.g. JDK, .NET 

framework core libraries) 

 

 Can outperform systematic input generation 

 On previous benchmarks and metrics (coverage), and 

 On a new, larger corpus of subjects, measuring error detection 

 

 Can outperform undirected random test  generation 
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