
4/15/2011

1

CSE503:

SOFTWARE ENGINEERING
TESTING

David Notkin

Spring 2011

Andreas Zeller‟s talk

503 11sp © UW CSE • D. Notkin

2

 Comments or questions?

Today

503 11sp © UW CSE • D. Notkin

3

 Some basics of software testing

 Characterizations of testing

 Terminology

 Basic approaches

 Mutation testing

 Random (feedback-directed) testing

 Next week: symbolic evaluation, concolic evaluation,
automatic test generation and related topics – in
some depth – many of the techniques used by
Andreas (and others!)

An example from Bach

 Asks students to “try long inputs” for a test requiring

an integer

 Interesting lengths are…?

503 11sp © UW CSE • D. Notkin

4

Enter an integer:

4/15/2011

2

Key boundaries: most not tried

 16 digits+: loss of mathematical

precision

 23+: can‟t see all of the input

 310+: input not understood as a

number

 1000+: exponentially increasing

freeze when navigating to the

end of the field by pressing

<END>

 23,829+: all text in field turns

white

 2,400,000: reproducible crash

 Why more not tried?

 Seduced by what‟s visible

 Think they need the

specification to tell them the

maximum – and if they have

one, stop there

 Satisfied by first boundary

 Use linear lengthening

strategy

 Think “no one would do that”

503 11sp © UW CSE • D. Notkin

5

Free association: “software testing”

503 11sp © UW CSE • D. Notkin

6

 Shout it out!

 Have any of you worked as a software tester?

Many views of testing

503 11sp © UW CSE • D. Notkin

7

 Showing you did something right vs. showing

somebody else did something wrong

 Getting useful software into users‟ hands vs.

stopping buggy software from getting into users‟

hands

 Finding defects vs. building confidence in properties

 Finding new bugs vs. making sure the rest of the

team can make progress

 …

Steve McConnell

503 11sp © UW CSE • D. Notkin

8

Testing by itself does not improve software quality. Test
results are an indicator of quality, but in and of
themselves, they don't improve it. Trying to improve
software quality by increasing the amount of testing is like
trying to lose weight by weighing yourself more often.
What you eat before you step onto the scale determines
how much you will weigh, and the software development
techniques you use determine how many errors testing will
find. If you want to lose weight, don't buy a new scale;
change your diet. If you want to improve your software,
don't test more; develop better.

4/15/2011

3

Cem Kaner & James Bach
9

 “Testing is an empirical investigation conducted to

provide stakeholders with information about the

quality of the software under test.”

 “Testing is questioning a product in order to

evaluate it.

 “The „questions‟ consist of ordinary questions about the

idea or design of the product, or else questions implicit

in the various ways of configuring and operating the

product. The product „answers‟ by exhibiting behavior,

which the tester observes and evaluates.”

503 11sp © UW CSE • D. Notkin

Herb Simon (via wikipedia)
10

 “Satisficing … is a decision-making strategy which attempts
to meet criteria for adequacy, rather than to identify an
optimal solution. A satisficing strategy may often be (near)
optimal if the costs of the decision-making process itself,
such as the cost of obtaining complete information, are
considered in the outcome calculus.”

 “[Simon] pointed out that human beings lack the cognitive
resources to maximize: we usually do not know the relevant
probabilities of outcomes, we can rarely evaluate all
outcomes with sufficient precision, and our memories are
weak and unreliable. A more realistic approach to
rationality takes into account these limitations: This is called
bounded rationality.”

503 11sp © UW CSE • D. Notkin

Quotations

 “Beware of bugs in the above code; I have only proved

it correct, not tried it.” – D. Knuth

 “Program testing can be used to show the presence of

bugs, but never to show their absence!” –E. Dijkstra

 “It is not a test that finds a bug but it is a human that

finds a bug and a test plays a role in helping the

human find it.” – P. Soundarajan



MJ quotation?

11

503 11sp © UW CSE • D. Notkin

Terminology

503 11sp © UW CSE • D. Notkin

12

 Failure – an externally-visible outcome that is
inconsistent with the specification

 This generally includes program crashes, exceptions that
aren‟t handled, etc.

 This also generally includes inconsistencies with the implicit
specification

 Fault – an inconsistent internal state

 These may or may not lead to failures

 Defect – the piece of code that leads to a failure or
fault

 Error – the human misunderstanding that led to the
defect

4/15/2011

4

Tests vs. test inputs

503 11sp © UW CSE • D. Notkin

13

 A test defines both inputs and expected outputs

 The expected output for a test is usually called an oracle

 A test input defines only the inputs

 These can be useful in identifying failures such as crashes –

there is no output to compare to an oracle

 They can be useful in assessing coverage properties

 Like most of the world, even in published papers, I may

not be very careful about this distinction – but push if

it‟s confusing!

Do tests pass or fail?

503 11sp © UW CSE • D. Notkin

14

 Does a test where the output matches the oracle

pass or fail?

 Does a test input that terminates normally pass or

fail?

Some key questions
15

Program under Test

T1

T2

…

TN

T1 X

T2 √

…

TN X

Coverage information

Where

do the

tests

come

from?

Where

do the

results

tell us?

Are

there

enough

tests?

Is the program

source visible?

(Any other

artifacts?)

Do all tests

have to be run?

Can they be?

If not, what to

do?

What should be

done when the

program changes?

…

Others? Testing theory
16

 Plenty of negative results

 Nothing guarantees correctness

 Statistical confidence is prohibitively expensive

 Being systematic may not improve fault detection (as

compared to simple random testing)

 “So what did you expect, decision procedures for

undecidable questions?” – M. Young

503 11sp © UW CSE • D. Notkin

4/15/2011

5

When can we stop?

 Ideally: adequate testing ensures some property

(proof by cases)

 Goodenough & Gerhart, Weyuker & Ostrand

 In reality, as impractical as other program proofs

 Practical adequacy criteria are really

“inadequacy” criteria

 If no case from class X has been chosen, surely more

testing is needed …

17

503 11sp © UW CSE • D. Notkin

18

Partition testing

 Basic idea: divide program input space into (quasi-)

equivalence classes, selecting at least one test case

from each class

 The devil is in the details – and there are many!

503 11sp © UW CSE • D. Notkin

Structural coverage testing

 (In)adequacy criteria – if significant parts of the
program structure are not tested, testing is surely
inadequate

 Control flow coverage criteria

 Statement (node, basic block) coverage

 Branch (edge) and condition coverage

 Data flow (syntactic dependency) coverage

 Others…

 “Attempted compromise between the impossible
and the inadequate”

19

503 11sp © UW CSE • D. Notkin

Statement coverage

 Unsatisfying in trivial

cases

if x > y then

 max := x

else

 max :=y

endif

if x < 0 then

 x := -x

endif

z := x;

20

503 11sp © UW CSE • D. Notkin

4/15/2011

6

Edge coverage

 Covering all basic
blocks (nodes,
statements) would not
require edge ac to be
covered

 Edge coverage
requires all control
flow graph edges to
be coverage by at
least one test

21

a

b

c

d

e

f

503 11sp © UW CSE • D. Notkin

22

Condition coverage

 How to handle compound conditions?
 if (p != NULL) && (p->left < p->right) …

 Is this a single conditional in the CFG? How do you

handle short-circuit conditionals?

 Condition coverage treats these as separate conditions

and requires tests that handle all combinations

 Modified Condition/Decision Coverage (MCDC)

 Sufficient test cases to verify whether every condition can

affect the result of the control structure

 Required for aviation software by RCTA/DO-178B

503 11sp © UW CSE • D. Notkin

23

Path coverage

 Edge coverage is in some sense very static

 Edges can be covered without covering actual paths

(sequences of edges) that the program may execute

 All paths in a program may not be executable

 Writing tests for these is hard 

 Not shipping a program until these paths are executed does

not provide a competitive advantage 

503 11sp © UW CSE • D. Notkin

24

Path coverage

 The test suite
{<x = 0, z = 1>,

<x = 1, z = 3>}

executes all edges, but…

if x ≠ 0 then

y := 5;

else

 z := z - x;

endif;

if z > 1 then

 z := z / x;

else

 z := 0;

end

503 11sp © UW CSE • D. Notkin

4/15/2011

7

25

Loop coverage

 Loop coverage also makes path coverage complex

 Each added iteration through a loop introduces a new

path

 Since we can‟t in general bound the number of loop

iterations, we often partition the paths for testing

purposes

 Never, once, many times …

 10 is a constant often used as a representation of “many”

503 11sp © UW CSE • D. Notkin

Data flow coverage criteria

 Idea: an untested def-use pair

could hide an erroneous

computation

 The increment of y has two

reaching definitions

 The assignment to z has two

reaching definitions for each

of x and y

 There are many variants on this

kind of approach

26

x := 7

y := x

y := y+1

z := x+y

503 11sp © UW CSE • D. Notkin

Structural coverage: challenges

 Interprocedural coverage

 Interprocedural dataflow, call-graph coverage, etc.

 Regression testing

 How to test version P‟ given that you‟ve tested P

 Late binding in OO – coverage of polymorphism

 Infeasible behaviors: arises once you get past the

most basic coverage criteria

27

503 11sp © UW CSE • D. Notkin

28

Infeasibility problem

 Syntactically indicated behaviors that are not
semantically possible

 Thus can‟t achieve “adequate” behavior of test
suites

 Could

 Manually justify each omission

 Give adequacy “scores” – for example, 95%
statement, 80% def-use, …

 [Can be deceptive, of course]

 Fault-injection is another approach to infeasibility

503 11sp © UW CSE • D. Notkin

4/15/2011

8

Mutation testing
29

 Mutation testing is an approach to evaluate – and

to improve – test suites

 Basic idea

 Create small variants of the program under test

 If the tests don‟t exhibit different behavior on the

variants then the test suite is not sufficient

 The material on the following slides is due heavily

to Pezzè and Young on fault-based testing

503 11sp © UW CSE • D. Notkin

Estimation

 Given a big bowl of marbles, how can we estimate

how many?

 Can‟t count every marble individually

30

503 11sp © UW CSE • D. Notkin

What if I also…

 … have a bag of 100 other marbles of the same

size, but a different color (say, black) and mix them

in?

 Draw out 100 marbles at random and find 20 of

them are black

 How many marbles did we start with?

31

503 11sp © UW CSE • D. Notkin

Estimating test suite quality

 Now take a program with bugs and create 100

variations each with a new and distinct bug

 Assume the new bugs are exactly like real bugs in

every way

 Run the test suite on all 100 new variants

 ... and the tests reveal 20 of the bugs

 … and the other 80 program copies do not fail

 What does this tell us about the test suite?

32

503 11sp © UW CSE • D. Notkin

4/15/2011

9

Basic Assumptions

 The idea is to judge effectiveness of a test suite in

finding real faults by measuring how well it finds

seeded fake faults

 Valid to the extent that the seeded bugs are

representative of real bugs: not necessarily

identical but the differences should not affect the

selection

33

503 11sp © UW CSE • D. Notkin

Mutation testing

 A mutant is a copy of a program with a mutation: a
syntactic change that represents a seeded bug

 Ex: change (i < 0) to (i <= 0)

 Run the test suite on all the mutant programs

 A mutant is killed if it fails on at least one test case

 That is, the mutant is distinguishable from the original
program by the test suite, which adds confidence about
the quality of the test suite

 If many mutants are killed, infer that the test suite is
also effective at finding real bugs

34

503 11sp © UW CSE • D. Notkin

Mutation testing assumptions

 Competent programmer hypothesis: programs are

nearly correct

 Real faults are small variations from the correct

program and thus mutants are reasonable models of

real buggy programs

 Coupling effect hypothesis: tests that find simple

faults also find more complex faults

 Even if mutants are not perfect representatives of real

faults, a test suite that kills mutants is good at finding

real faults, too

35

503 11sp © UW CSE • D. Notkin

Mutation Operators

 Syntactic change from legal program to legal program
and are thus specific to each programming language

 Ex: constant for constant replacement

 from (x < 5) to (x < 12)

 Maybe select from constants found elsewhere in program
text

 Ex: relational operator replacement

 from (x <= 5) to (x < 5)

 Ex: variable initialization elimination

 from int x =5; to int x;

36

503 11sp © UW CSE • D. Notkin

4/15/2011

10

Live mutants scenario

 Create 100 mutants from a program

 Run the test suite on all 100 mutants, plus the original

program

 The original program passes all tests

 94 mutant programs are killed (fail at least one test)

 6 mutants remain alive

 What can we learn from the living mutants?

37

503 11sp © UW CSE • D. Notkin

How mutants survive

 A mutant may be equivalent to the original program

 Maybe changing (x < 0) to (x <= 0) didn‟t change

the output at all!

 The seeded “fault” is not really a “fault” – determining this

may be easy or hard or in the worst case undecidable

 Or the test suite could be inadequate

 If the mutant could have been killed, but was not, it indicates

a weakness in the test suite

 But adding a test case for just this mutant is likely a bad

idea – why?

38

503 11sp © UW CSE • D. Notkin

Weak mutation: a variation
39

 There are lots of mutants – the number of mutants
grows with the square of program size

 Running each test case to completion on every mutant is
expensive

 Instead execute a “meta-mutant” that has many of the
seeded faults in addition to executing the original
program

 Mark a seeded fault as “killed” as soon as a difference in
an intermediate state is found – don‟t wait for program
completion

 Restart with new mutant selection after each “kill”

503 11sp © UW CSE • D. Notkin

Statistical Mutation: another variation
40

 Running each test case on every mutant is

expensive, even if we don‟t run each test case

separately to completion

 Approach: Create a random sample of mutants

 May be just as good for assessing a test suite

 Doesn‟t work if test cases are designed to kill particular

mutants

503 11sp © UW CSE • D. Notkin

4/15/2011

11

In real life ...

 Fault-based testing is a widely used in semiconductor
manufacturing

 With good fault models of typical manufacturing faults, e.g.,
“stuck-at-one” for a transistor

 But fault-based testing for design errors – as in software –
is more challenging

 Mutation testing is not widely used in industry

 But plays a role in software testing research, to compare
effectiveness of testing techniques

 Some use of fault models to design test cases is
important and widely practiced

41

503 11sp © UW CSE • D. Notkin

Summary

 If bugs were marbles ...

 We could get some nice black marbles to judge the
quality of test suites

 Since bugs aren‟t marbles ...

 Mutation testing rests on some troubling assumptions
about seeded faults, which may not be statistically
representative of real faults

 Nonetheless ...

 A model of typical or important faults is invaluable
information for designing and assessing test suites

42

503 11sp © UW CSE • D. Notkin

Feedback-directed Random
Test Generation

(to appear in ICSE 2007)

 Carlos Pacheco Shuvendu Lahiri

 Michael Ernst Thomas Ball

 MIT Microsoft Research

January 19, 2007

Random testing

 Select inputs at random from a program’s input space

 Check that program behaves correctly on each input

 An attractive error-detection technique

 Easy to implement and use

 Yields lots of test inputs

 Finds errors

 Miller et al. 1990: Unix utilities

 Kropp et al.1998: OS services

 Forrester et al. 2000: GUI applications

 Claessen et al. 2000: functional programs

 Csallner et al. 2005,

 Pacheco et al. 2005: object-oriented programs

 Groce et al. 2007: flash memory, file systems

503 11sp © UW CSE •
D. Notkin

44

4/15/2011

12

Evaluations of random testing

 Theoretical work suggests that random testing is
as effective as more systematic input generation
techniques (Duran 1984, Hamlet 1990)

and they use completely undirected random test generation.

 Some empirical studies suggest systematic is more
effective than random

 Ferguson et al. 1996: compare with chaining

 Marinov et al. 2003: compare with bounded exhaustive

 Visser et al. 2006: compare with model checking and

symbolic execution

Studies are performed on small benchmarks,

they do not measure error revealing effectiveness,

503 11sp © UW CSE •
D. Notkin

45

Contributions

 We propose feedback-directed random test
generation

 Randomized creation of new test inputs is guided by

feedback about the execution of previous inputs

 Goal is to avoid redundant and illegal inputs

 Empirical evaluation

 Evaluate coverage and error-detection ability on a large
number of widely-used, well-tested libraries (780KLOC)

 Compare against systematic input generation

 Compare against undirected random input generation

503 11sp © UW CSE •
D. Notkin

46

Random testing: pitfalls

1. Useful test
Set t = new HashSet();
s.add(“hi”);

assertTrue(s.equals(s));

3. Useful test
Date d = new Date(2006, 2, 14);
assertTrue(d.equals(d));

2. Redundant test
Set t = new HashSet();
s.add(“hi”);

s.isEmpty();
assertTrue(s.equals(s));

4. Illegal test
Date d = new Date(2006, 2, 14);
d.setMonth(-1); // pre: argument >= 0

assertTrue(d.equals(d));

5. Illegal test

Date d = new Date(2006, 2, 14);
d.setMonth(-1);
d.setDay(5);

assertTrue(d.equals(d));

 do not output

do not even create

503 11sp © UW CSE •
D. Notkin

47

Feedback-directed random
test generation

 Build test inputs incrementally

 New test inputs extend previous ones

 In our context, a test input is a method sequence

 As soon as a test input is created, execute it

 Use execution results to guide generation

 away from redundant or illegal method sequences

 towards sequences that create new object states

503 11sp © UW CSE •
D. Notkin

48

4/15/2011

13

Technique input/output

 Input:

 classes under test

 time limit

 set of contracts

 Method contracts (e.g. “o.hashCode() throws no exception”)

 Object invariants (e.g. “o.equals(o) == true”)

 Output: contract-violating test cases. Example:

HashMap h = new HashMap();
Collection c = h.values();
Object[] a = c.toArray();

LinkedList l = new LinkedList();
l.addFirst(a);
TreeSet t = new TreeSet(l);

Set u = Collections.unmodifiableSet(t);
assertTrue(u.equals(u)); fails when executed

no contracts
violated
up to last
method call

503 11sp © UW CSE •
D. Notkin

49

1. Seed components
components = { ... }

2. Do until time limit expires:

a. Create a new sequence

i. Randomly pick a method call m(T1...Tk)/Tret

ii. For each input parameter of type Ti, randomly pick a

sequence Si from the components that constructs an object
vi of type Ti

iii. Create new sequence Snew = S1; ... ; Sk ; Tret vnew = m(v1...vk);

iv. if Snew was previously created (lexically), go to i

b. Classify the new sequence Snew

a. May discard, output as test case, or add to components

Technique

int i = 0; boolean b = false;

503 11sp © UW CSE •
D. Notkin

50

Classifying a sequence

execute and
check

contracts

components

contract-
violating
test case

contract
violated?

minimize
sequence

yes

sequence
redundant?

no

yes

discard
sequence

start

no

503 11sp © UW CSE •
D. Notkin

51

Redundant sequences

 During generation, maintain a set of all
objects created.

 A sequence is redundant if all the objects
created during its execution are members of
the above set (using equals to compare)

 Could also use more sophisticated state
equivalence methods

 E.g. heap canonicalization

503 11sp © UW CSE •
D. Notkin

52

4/15/2011

14

Coverage achieved by Randoop

data structure time (s) branch

cov.

Bounded stack (30 LOC) 1 100%

Unbounded stack (59 LOC) 1 100%

BS Tree (91 LOC) 1 96%

Binomial heap (309 LOC) 1 84%

Linked list (253 LOC) 1 100%

Tree map (370 LOC) 1 81%

Heap array (71 LOC) 1 100%

 Comparable with exhaustive/symbolic techniques

503 11sp © UW CSE •
D. Notkin

53

Predicate coverage

Binary tree

52

53

54

55

0 0.5 1 1.5 2 2.5

time (seconds)

p
re

d
ic

at
e

co
ve

ra
g

e

Binomial heap

84

90

96

102

0 5 10 15

time (seconds)

p
re

d
ic

a
te

 c
o

v
e
ra

g
e

Fibonacci heap

84

88

92

96

100

0 20 40 60 80 100

time (seconds)

p
re

d
ic

a
te

 c
o

v
e
ra

g
e

Tree map

103

104

105

106

107

0 10 20 30 40 50

time (seconds)

p
re

d
ic

a
te

 c
o

v
e
ra

g
e

best systematic

feedback-directed

undirected random
undirected random

feedback-directed best systematic

undirected random

feedback-directed best systematic

best systematic

undirected random

feedback-directed

503 11sp © UW CSE •
D. Notkin

54

Evaluation: summary

 Feedback-directed random test generation:

 Is effective at finding errors

 Discovered several errors in real code (e.g. JDK, .NET

framework core libraries)

 Can outperform systematic input generation

 On previous benchmarks and metrics (coverage), and

 On a new, larger corpus of subjects, measuring error detection

 Can outperform undirected random test generation

503 11sp © UW CSE •
D. Notkin

55

