
4/12/2011

1

CSE503:

SOFTWARE ENGINEERING
MODEL CHECKING

David Notkin

Spring 2011

Two Approaches to Model Checking
2

 Explicit – represent all states

 Use conventional state-space search

 Reduce state space by folding equivalent states together

 Symbolic – represent sets of states using boolean formulae

 Reduce huge state spaces by considering large sets of states
simultaneously – to the first order, this is the meeting of BDDs
(binary decision diagrams) and model checking (more later)

 Convert state machines, logic formulae, etc. to boolean
representations

 Perform state space exploration using boolean operators to
perform set operations

 SAT solvers are often at the base of symbolic model checking

503 11sp © UW CSE • D. Notkin

Example temporal logic properties

503 11sp © UW CSE • D. Notkin

3

 Error states not reached (invariant)

 AG ¬Err

 Eventually ack for each request (liveness)

 AG (Req  AF Ack)

 Always possible to restart machine (possibility)

 AG EF Restart

Representing sets

 Symbolic model checking needs to represent large
sets of states concisely – for example, all even
numbers between 0 and 127

 Explicit representation
 0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44,

46, 48, 50, 52, 54, 56, 58, 60, 62, 64, 66, 68, 70, 72, 74, 76, 78, 80, 82, 84, 86,
88, 90, 92, 94, 96, 98, 100, 102, 104, 106, 108, 110, 112, 114, 116, 118, 120,
122, 124, 126

 Implicit (symbolic) representation
 ¬x0 (x0: least significant bit)

 The size of the explicit representation grows with the bound, but not so
for the implicit representation (in many cases)

 Need efficient boolean representation

4

503 11sp © UW CSE • D. Notkin

4/12/2011

2

Binary Decision Diagrams (BDDs)

 The original and most common
representation is binary decision
diagrams (BDDs) [Bryant 86]

 These are directed acyclic graphs
evaluated as binary decision trees

 For the trivial example, these are
trivial BDDs: x0 and ¬x0

 On the right is an example of a
BDD for odd (even) parity of 4-bit
numbers

5

x0

x1

x2

x3

0

1

503 11sp © UW CSE • D. Notkin

What would odd parity look like if…
6

 …the bits in the BDD were ordered in reverse?

 x3x2x1x0

 Bit order x0x1x2x3 – compute BDD for x1x0 + x3x2
 Bit order x0x1x2x3 – compute BDD for x2x0 + x3x1
 Bit order x0x1x2x3 – compute BDD for x1x0 * x3x2
 Bit order x0x1x2x3 – compute BDD for x2x0 * x3x1

 Take 5-10 minutes with 1-2 others to work these out

503 11sp © UW CSE • D. Notkin

Efficiency
7

 BDD size is often small in practice

 Some large hardware circuits can be handled

 Some well-known limitations: e.g., exponential size

for a > bc

 Few theoretical results known

 Performance unpredictable

 When BDDs are manageable in size, model

checking is generally efficient

503 11sp © UW CSE • D. Notkin

Symbolic Model Checking

 Define boolean state variables
 e.g., define X = xn-1, xn-2, …, x0 for an n-bit integer.

 A state set becomes a boolean function S(X)

 the formulae for even numbers, odd parity, etc.

 Set operations (,) become boolean operations (,)

 Transition relation: R(X,X)

 Compute predecessors using boolean operations: Pre(S) =
X’. S(X’)  R(X,X’)

 In other words, turn everything into boolean algebra and
represent the states – and the temporal formulae – as
BDDs

8

503 11sp © UW CSE • D. Notkin

4/12/2011

3

Invariant Checking as Set Manipulation

 Compute Yi+1 = Pre (Yi)  Yi

 Check if Yn  Init = 

9

Y
0
 = ErrY

1
...Y

n-1Y
n
 = Y

n-1
Y

n
 = Y

n-1

Init

States that

can reach an

Error State

Error

States

Backward breadth-first search

Can the initial state ever

reach an error state?

503 11sp © UW CSE • D. Notkin

Recap
10

 Check finite state machines vs. temporal logic

formulae: yes or no with counterexample

 Symbolic model checking represents everything as

BDDs and converts set operations over the state

space to boolean operations over sets of states

 Need state machines, efficient BDDs, temporal logic

formulae, etc.

503 11sp © UW CSE • D. Notkin

Many FSM variations
11

 Deterministic and non-deterministic

 Mealy and Moore machines

 Transformers and acceptors

 Hierarchical state machines

 Statecharts

 RMSL

 The good news is that these are all theoretically
equivalent representations

 That leaves the size of the state space as a key issue to
address: in practice, state spaces have sufficient
structure to be managed even when they are huge

503 11sp © UW CSE • D. Notkin

Another key issue: abstraction
12

 Programs are not generally finite-state

 Classic trivial example: recognizing nested parentheses
requires unbounded state space (and it can be worse than
this)

 So to use model checking we need to acquire a useful
finite-state model

 Roughly two choices

 Directly find a useful finite-state model

 Produce a useful finite-state model from a non-finite-state
model – and understand clearly what is and is not lost in
that abstraction process

 Door #3: bounded model checking

503 11sp © UW CSE • D. Notkin

4/12/2011

4

Check software specification
13

 Motivation: circa 1998-2000 – work here at UW CSE

 How to increase confidence in correctness of safety-
critical software?

 Existing techniques useful with limitations: inspection,
syntactic checking, simulation/testing, and theorem
proving

 Symbolic model checking successful for industrial
hardware

 Effective also for software?

 Many people’s conjecture: No

503 11sp © UW CSE • D. Notkin

Experts Said
14

 “The time and space complexity of [symbolic model
checking] is affected…by the regularity of specification.
Software requirements specifications lack this necessary
regular structure…” [Heimdahl & Leveson 96]

 “[Symbolic model checking] works well for hardware designs
with regular logical structures…However, it is less likely to
achieve similar reductions in software specifications whose
logical structures are less regular.” [Cheung & Kramer 99]

 “…[symbolic model checkers] are often able to exploit the
regularity…in many hardware designs. Because software
typically lacks this regularity, [symbolic] model checking
seems much less helpful for software verification.” [Emerson
97]

503 11sp © UW CSE • D. Notkin

Consider Safety-Critical Software
15

 Most costly bugs in specification

 Use analyzable formal specification

 State-machine specifications

 Intuitive to domain experts like aircraft engineers

 Statecharts [Harel 87], RSML [Leveson et al. 94], SCR

[Parnas et al.], etc.

503 11sp © UW CSE • D. Notkin

Why is specification promising?

503 11sp © UW CSE • D. Notkin

16

Hardware Spec

Multi-threaded

Code

Data Simple
Simple (except

arithmetic)
Often complex

States Finite
Finite (except

arithmetic)
Possibly infinite

Concurrency Synchronous Synchronous Asynchronous

4/12/2011

5

Case Study 1: TCAS II

 Traffic Alert and Collision Avoidance System

 Reduce mid-air collisions: warn pilots of traffic and

issue resolution advisories

 “One of the most complex systems on commercial

aircraft.”

 400-page specification reverse-engineered from

pseudo-code: written in RSML by Leveson et al.,

based on statecharts

17

503 11sp © UW CSE • D. Notkin

Case Study 2: EPD System

 Electrical Power Distribution system used on Boeing 777

 Distribute power from sources to buses via circuit breakers

 Tolerate failures in power sources and circuit breakers

 Prototype specification in statecharts

 Analysis joint with Jones and Warner of Boeing

20

LGen RGen ...

LMain Rmain ...

power sources

power buses

circuit breakers

LGen RGen ...

LMain Rmain ...

503 11sp © UW CSE • D. Notkin

4/12/2011

6

Translation to SMV
21

VAR

A: {0,1};

x: boolean;

y: boolean;

ASSIGN

init (A):= 0;

next (A):= case

 A=0 & x & c : 1;

 1 : A;

 esac;

…

0 1

x[c]/y

0 1

y

A

B

503 11sp © UW CSE • D. Notkin

Deterministic or not?

503 11sp © UW CSE • D. Notkin

22

V_254a := MS = TA_RA | MS = TA_only | MS =3 | MS = 4 |
 MS = 5 | MS = 6 | MS = 7;
V_254b := ASL = 2 | ASL = 3 | ASL = 4 | ASL = 5 |
 ASL = 6 | ASL = 7;
T_254 := (ASL = 2 & V_254a) | (ASL = 2 & MS = TA_only) |
 (V_254b & LG = 2 & V524a);
V_257a := LG = 5 | LG = 6 | LG = 7 | LG = none;
V_257b := MS = TA_RA | MS = 5 || MS = 6 | MS = 7;
V_257c := MS = TA_RA | MS = TA_only | MS = 3 | MS = 4 |
 MS = 5 | MS = 6 | MS = 7;
V_257d := ASL = 5 | ASL = 6 | ASL = 7;
T_257 := (ASL = 5 | V_257a | V_257b) |
 (ASL = 5 & MS = TA_only) |
 (ASL = 5& LG = 2 & V_257c) |
 (V_257d & LG = 5 & V_257b) |
 (V_257d & V_257a & MS = 5);

Analyses and Results

 Used and modified SMV [McMillan 93]

TCAS II EPD System

State space 230 bits, 1060 states 90 bits, 1027 states

Prior verification inspection,

static analysis

simulation

Problems we found inconsistent outputs,

safety violations, etc.

violations of fault

tolerance

23

503 11sp © UW CSE • D. Notkin

Some Formulae Checked

 TCAS II

 Descent inhibition: AG (Alt < 1000  Descend)

 Output agreement: AG (GoalRate  0  Descend)

 EPD system

 AG (NoFailures 
 (LMain  RMain  LBackup  RBackup))

 AG (AtMostOneFailure  (LMain  RMain))

 AG (AtMostTwoFailures  (LBackup  RBackup))

 Where do these come from?

24

503 11sp © UW CSE • D. Notkin

4/12/2011

7

One example (EPD) counterexample
25

 A single failure can cause a bus to lose power

 Power-up sequence; normal operation

 A circuit breaker fails

 Other circuit breakers reconfigured to maintain power

 User changes some inputs

 The first circuit breaker recovers

 User turns off a generator

 A bus loses power

This error
does not exist

in onboard
system

503 11sp © UW CSE • D. Notkin

Synchrony hypothesis

macrostep

microsteps

inputs outputs

 No new inputs within macrostep

 Macrostep encoded as a sequence of transitions

 Statecharts, Esterel [Berry & Gonthier 92], Lustre
[Halbwachs et al. 92], etc.

Mutual Exclusion of Transitions

 Many “concurrent”

transitions are sequential

 Determine using static

analysis

 Use this to prune

backward search

 Generally unclear

whether forward or

backward search is

better

 Forward search

 Often good for low-

level hardware.

 But always bad for us;

large BDDs

503 11sp © UW CSE • D. Notkin

27

0 1

x[c]/y

0 1

y

A

B

A Disadvantage of Backward Search

 Visiting unreachable states

 Find invariants that are small as BDDs and effective in

reducing main BDD sizes

 Often from the domain itself

Y
0

Y
1

Y
2

Reachable States

4/12/2011

8

Initial EPD Analyses Failed
29

 Even though it has fewer states than TCAS II

 Main difference in synchronization

 TCAS used “oblivious” synchronization –every external

event took the same number of state transitions

 EPD used “non-oblivious” synchronization

 Solution: convert non-oblivious to oblivious and

maintain (most) properties

 TCAS II EPD System

State space 230 bits, 1060 states 90 bits, 1027 states

503 11sp © UW CSE • D. Notkin

Oblivious Synchronization (TCAS II)

A

B

0 1

x[c]/y

x[c]/y
x[c]/y x[c]/y

0 1

y[A in 1]

y[A in 0]
y[A in 0] y[A in 1]

 y signals completion of machine A

 Macrostep length: 2

x  y  stable

Non-Oblivious Synchronization (EPD)

0 1

x[c]/y

0 1

y

A

B

 y signals state change in machine A

 Macrostep length: 1 or 2

 x  y  stable

 x  stable

Oblivious Synchronization

 Backward search yields small BDDs

 Event sequence always identical: every macro-step

has the same length

x y,z w z

x y,z w z

x y,z w z

4/12/2011

9

Non-Oblivious Synchronization

 Backward search leads to
(much) larger BDDs

 Basic solution: Automatic
semantics-preserving
transformation

 Add stuttering states to make
every macro-step of equal
length

 Preserve most properties, e.g.,
invariants and eventualities.
[Lamport 83, Browne et al. 89]

 Increase # states and # state
variables

 Increase # iterations to reach
fixed points

x y,z w z

x w z

x

Overall Effects on TCAS II

0

1

2

3

4

5

6

7

8

9

10

Min.

P1 P2 P3 P4 P5 P6

Without pruning

With pruning

>> 1 hour

34 503 11sp © UW CSE • D. Notkin

Some Lessons Learned
35

 Focus on restricted models that people care about

 Exploit high-level knowledge to improve analysis

 Synchronization, environmental assumptions, etc.

 In addition to low-level BDD tricks

 Combine static analysis and symbolic model

checking

 Help understand system behaviors

 In addition to verification/falsification

503 11sp © UW CSE • D. Notkin

SLAM and SDV
36

 Technically interesting: how to effectively use model

checking to establish useful properties of an

important class of C programs

 Sociologically interesting: what it takes to transfer

technology – it’s an ecosystem of sorts

 A much broader view of the ecosystem of creating

major high-tech industries can be found in Innovation in

Information Technology, The National Academies Press,

2003 (http://www.nap.edu/catalog.php?record_id=10795)

503 11sp © UW CSE • D. Notkin

http://www.nap.edu/catalog.php?record_id=10795
http://www.nap.edu/catalog.php?record_id=10795

4/12/2011

10

Basic story
37

 Third-party device drivers caused a disproportionate

number of “blue screens” for Windows – costly in time

and effort, as well as in reputation for Microsoft

 Are major causes of the device driver errors checkable

automatically even though arbitrary C code isn’t fully

checkable: infinite paths, aliasing, …

 Found an abstraction of drivers and properties to check

that allowed a combination of model checking and

symbolic execution to identify major classes of errors in

practice

503 11sp © UW CSE • D. Notkin

Evaluation and examples

 Applied SDV to 126 WDM

drivers (storage, USB, 1394-

interface, mouse, keyboard,

…)

 Well tested, code reviewed

by experts, in use for years,

26 were open source

 48 to 130,000 LOC,

average of 12KLOC

 An initial study reported 206

defects: investigation of 65,

including working with the

code owners, classified 53

as true errors and 12 as

false errors

 In a path a driver marked an I/O request packet

pending with a kernel API, but didn’t mark it in a

related data structure

 A driver’s dispatch routine returned STATUS

PENDING but declared the I/O request packet

as completed with IoCompleteRequest

 A driver called IoStartNextPacket from

within StartIo, which could lead to recursion

exceeding the stack space

 Early in the execution a device driver called an

API that can raise the interrupt request level of

the thread, and then (much later) called another

kernel API that should not be called when the

interrupt request level is raised (because it

touches paged data)

 IoCompleteRequest was called while

holding a spinlock, which could cause deadlock

 …

38

Abstraction for SDV
39

 Focused goal: check that device drivers make

proper use of the driver API – not to check that the

drivers do the right thing (or even anything useful)

 Automatically abstracts the C code of a device

driver

 Guarantees that any API usage rule violation in the

original code also appears in the abstraction

 Then check the abstraction – which is smaller and

more focused than the original code

503 11sp © UW CSE • D. Notkin

Boolean predicate abstraction
40

 Translate to a representation that has all of C’s control flow
constructs but only boolean variables that in turn track the
state of relevant boolean expressions in the C code

 These relevant expressions are selected based on
predefined API usage rules constructed for device drivers

 Consider a driver with 100 KLOC and complicated data
structures and checking for an API usage rule intended to
verify proper usage of a specific spinlock

 Abstract to a program that tracks, at each line of code, the
state of the spin lock as either locked or unlocked

 This leads to a boolean program with around 200,000
states, which is manageable by model checking

503 11sp © UW CSE • D. Notkin

4/12/2011

11

API usage rules

 A state machine with two

components

 a static set of state

variables (a C struct)

 a set of events and state

transitions

 On right: rule for the proper

usage of spin locks

 one state variable

 two events on which state

transitions happen –

returns of calls to

acquire and

release

state { enum {Unlocked, Locked}

 state = Unlocked;

} watch KeAcquireSpinLock.$1;

KeAcquireSpinLock.return [guard $1] {

 if (state == Locked) {

 error;

 } else {

 state = Locked;

 }

}

KeReleaseSpinLock.return [guard $1] {

 if (state == Unlocked) {

 error;

 } else {

 state = Unlocked;

 }

}

41

Overall process (beyond abstraction)
42

 Given a boolean program with an error state, check

whether or not the error state is reachable – BDD-

based model-checking

 If the checker identifies an error path that is a feasible

execution path in the original C, then report an error

 If the path is not feasible then refine the boolean

program to eliminate the false path

 Use symbolic execution and a theorem prover to find a

set of predicates that eliminates the false error path

503 11sp © UW CSE • D. Notkin

Overview of process
43

Figure from “Thorough Static Analysis of Device Drivers” (Ball et al. EuroSys 06)

503 11sp © UW CSE • D. Notkin

A hot topic: many efforts including…
44

 BLAST: Berkeley Lazy Abstraction Software Verification Tool
(http://mtc.epfl.ch/software-tools/blast/)

 “The goal … is to be able to check that software satisfies behavioral properties of the
interfaces it uses. [It] uses counterexample-driven automatic abstraction refinement to
construct an abstract model which is model checked for safety properties. The abstraction
is constructed on-the-fly, and only to the required precision.”

 VeriSoft (http://cm.bell-labs.com/who/god/verisoft/)

 “… automatically searches for coordination problems (deadlocks, etc.) and assertion
violations in a software system by generating, controlling, and observing the possible
executions and interactions of all its components.”

 Java PathFinder (http://javapathfinder.sourceforge.net/)

 “[It] is a Java Virtual Machine that is used as an explicit state software model checker,
systematically exploring all potential execution paths of a program to find violations of
properties like deadlocks or unhandled exceptions. … [A] model checker has to employ
flexible heuristics and state abstractions. JPF is unique in terms of its configurability and
extensibility, and hence is a good platform to explore new ways to improve scalability.”

503 11sp © UW CSE • D. Notkin

http://mtc.epfl.ch/software-tools/blast/
http://mtc.epfl.ch/software-tools/blast/
http://mtc.epfl.ch/software-tools/blast/
http://cm.bell-labs.com/who/god/verisoft/
http://cm.bell-labs.com/who/god/verisoft/
http://cm.bell-labs.com/who/god/verisoft/
http://javapathfinder.sourceforge.net/

4/12/2011

12

Coming soon…

503 11sp © UW CSE • D. Notkin

45

 Model checking has really taken off in some

dimensions

 In particular, there has been a lot of work

connecting automated test generation and model

checking (along with symbolic evaluation, etc.)

 We’ll come back to this after we do an overview of

some key software testing basics

