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Two Approaches to Model Checking 
2 

 Explicit – represent all states 

 Use conventional state-space search 

 Reduce state space by folding equivalent states together 

 Symbolic – represent sets of states using boolean formulae 

 Reduce huge state spaces by considering large sets of states 
simultaneously – to the first order, this is the meeting of BDDs 
(binary decision diagrams) and model checking (more later) 

 Convert state machines, logic formulae, etc. to boolean 
representations 

 Perform state space exploration using boolean operators to 
perform set operations 

 SAT solvers are often at the base of symbolic model checking 
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Example temporal logic properties 
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 Error states not reached (invariant) 

 AG ¬Err 

 Eventually ack for each request (liveness) 

 AG (Req  AF Ack) 

 Always possible to restart machine (possibility) 

 AG EF Restart 

Representing sets 

 Symbolic model checking needs to represent large 
sets of states concisely – for example, all even 
numbers between 0 and 127 

 Explicit representation 
 0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 

46, 48, 50, 52, 54, 56, 58, 60, 62, 64, 66, 68, 70, 72, 74, 76, 78, 80, 82, 84, 86, 
88, 90, 92, 94, 96, 98, 100, 102, 104, 106, 108, 110, 112, 114, 116, 118, 120, 
122, 124, 126 

 Implicit (symbolic) representation 
 ¬x0  (x0: least significant bit) 

 The size of the explicit representation grows with the bound, but not so 
for the implicit representation (in many cases) 

 Need efficient boolean representation 
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Binary Decision Diagrams (BDDs) 

 The original and most common 
representation is binary decision 
diagrams (BDDs) [Bryant 86] 

 These are directed acyclic graphs 
evaluated as binary decision trees 

 For the trivial example, these are 
trivial BDDs: x0 and ¬x0 

 On the right is an example of a 
BDD for odd (even) parity of 4-bit 
numbers 
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What would odd parity look like if… 
6 

 …the bits in the BDD were ordered in reverse?  

 x3x2x1x0 
 

 Bit order x0x1x2x3 – compute BDD for x1x0 + x3x2 
 Bit order x0x1x2x3 – compute BDD for x2x0 + x3x1 
 Bit order x0x1x2x3 – compute BDD for x1x0 * x3x2 
 Bit order x0x1x2x3 – compute BDD for x2x0 * x3x1 

 

 Take 5-10 minutes with 1-2 others to work these out  

503 11sp © UW CSE  • D. Notkin 

Efficiency 
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 BDD size is often small in practice 

 Some large hardware circuits can be handled 

 Some well-known limitations: e.g., exponential size 

for a > bc 

 Few theoretical results known 

 Performance unpredictable 

 When BDDs are manageable in size, model 

checking is generally efficient 
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Symbolic Model Checking 

 Define boolean state variables 
 e.g., define X = xn-1, xn-2, …, x0 for an n-bit integer. 

 A state set becomes a boolean function S(X) 

 the formulae for even numbers, odd parity, etc. 

 Set operations (,) become boolean operations (,) 

 Transition relation: R(X,X) 

 Compute predecessors using boolean operations: Pre(S) =  
X’. S(X’)  R(X,X’) 
 

 In other words, turn everything into boolean algebra and 
represent the states – and the temporal formulae – as 
BDDs 
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Invariant Checking as Set Manipulation 

 Compute Yi+1 = Pre (Yi)  Yi 

 Check if Yn  Init =  
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Recap 
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 Check finite state machines vs. temporal logic 

formulae: yes or no with counterexample 

 Symbolic model checking represents everything as 

BDDs and converts set operations over the state 

space to boolean operations over sets of states 

 Need state machines, efficient BDDs, temporal logic 

formulae, etc. 

503 11sp © UW CSE  • D. Notkin 

Many FSM variations 
11 

 Deterministic and non-deterministic 

 Mealy and Moore machines 

 Transformers and acceptors 

 Hierarchical state machines 

 Statecharts 

 RMSL 

 The good news is that these are all theoretically 
equivalent representations 

 That leaves the size of the state space as a key issue to 
address: in practice, state spaces have sufficient 
structure to be managed even when they are huge 
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Another key issue: abstraction 
12 

 Programs are not generally finite-state 

 Classic trivial example: recognizing nested parentheses 
requires unbounded state space (and it can be worse than 
this) 

 So to use model checking we need to acquire a useful 
finite-state model 

 Roughly two choices 

 Directly find a useful finite-state model 

 Produce a useful finite-state model from a non-finite-state 
model – and understand clearly what is and is not lost in 
that abstraction process 

 Door #3: bounded model checking 
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Check software specification 
13 

 Motivation: circa 1998-2000 – work here at UW CSE 

 How to increase confidence in correctness of safety-
critical software? 

 Existing techniques useful with limitations: inspection, 
syntactic checking, simulation/testing, and theorem 
proving 

 Symbolic model checking successful for industrial 
hardware 

 Effective also for software? 

 Many people’s conjecture: No 
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Experts Said 
14 

 “The time and space complexity of [symbolic model 
checking] is affected…by the regularity of specification.  
Software requirements specifications lack this necessary 
regular structure…” [Heimdahl & Leveson 96] 

 “[Symbolic model checking] works well for hardware designs 
with regular logical structures…However, it is less likely to 
achieve similar reductions in software specifications whose 
logical structures are less regular.”  [Cheung & Kramer 99] 

 “…[symbolic model checkers] are often able to exploit the 
regularity…in many hardware designs.  Because software 
typically lacks this regularity, [symbolic] model checking 
seems much less helpful for software verification.” [Emerson 
97] 
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Consider Safety-Critical Software  
15 

 Most costly bugs in specification 

 Use analyzable formal specification 

 State-machine specifications 

 Intuitive to domain experts like aircraft engineers 

 Statecharts [Harel 87], RSML [Leveson et al. 94], SCR 

[Parnas et al.], etc. 
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Why is specification promising? 
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Case Study 1: TCAS II 

 Traffic Alert and Collision Avoidance System 

 Reduce mid-air collisions: warn pilots of traffic and 

issue resolution advisories 

 “One of the most complex systems on commercial 

aircraft.” 

 400-page specification reverse-engineered from 

pseudo-code: written in RSML by Leveson et al., 

based on statecharts 
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Case Study 2: EPD System 

 Electrical Power Distribution system used on Boeing 777 

 Distribute power from sources to buses via circuit breakers 

 Tolerate failures in power sources and circuit breakers 

 Prototype specification in statecharts 

 Analysis joint with Jones and Warner of Boeing 
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LGen  RGen  ...

LMain Rmain ...

power sources

power buses

circuit breakers

LGen  RGen  ...

LMain Rmain ...
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Translation to SMV 
21 

VAR 

A: {0,1}; 

x: boolean; 

y: boolean; 

ASSIGN 

init (A):= 0; 

next (A):= case 

  A=0 & x & c : 1; 

  1 : A; 

  esac; 

… 

0 1

x[c]/y

0 1

y

A

B
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Deterministic or not? 
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V_254a := MS = TA_RA | MS = TA_only | MS =3 | MS = 4 | 
                       MS = 5 | MS = 6 | MS = 7;  
V_254b := ASL = 2 | ASL = 3 | ASL = 4 | ASL = 5 | 
          ASL = 6 | ASL = 7; 
T_254 := (ASL = 2 & V_254a) | (ASL = 2 & MS = TA_only) | 
         (V_254b & LG = 2 & V524a); 
V_257a := LG = 5 | LG = 6 | LG = 7 | LG = none; 
V_257b := MS = TA_RA | MS = 5 || MS = 6 | MS = 7; 
V_257c := MS = TA_RA | MS = TA_only | MS = 3 | MS = 4 | 
          MS = 5 | MS = 6 | MS = 7; 
V_257d := ASL = 5 | ASL = 6 | ASL = 7; 
T_257 := (ASL = 5 | V_257a | V_257b) | 
         (ASL = 5 & MS = TA_only) | 
         (ASL = 5& LG = 2 & V_257c) | 
         (V_257d & LG = 5 & V_257b) | 
         (V_257d & V_257a & MS = 5);     

Analyses and Results 

 Used and modified SMV [McMillan 93] 

 

 

 

 

 

 

TCAS II EPD System 

State space 230 bits, 1060 states 90 bits, 1027 states 

Prior verification inspection, 

static analysis 

simulation 

Problems we found inconsistent outputs, 

safety violations, etc. 

violations of fault 

tolerance 
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Some Formulae Checked 

 TCAS II 

 Descent inhibition: AG (Alt < 1000  Descend) 

 Output agreement: AG (GoalRate  0  Descend) 

 EPD system 

 AG (NoFailures  
          (LMain  RMain  LBackup  RBackup)) 

 AG (AtMostOneFailure  (LMain  RMain)) 

 AG (AtMostTwoFailures  (LBackup  RBackup)) 
 

 Where do these come from? 

 

24 
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One example (EPD) counterexample 
25 

 A single failure can cause a bus  to lose power 

 

 Power-up sequence; normal operation 

 A circuit breaker fails 

 Other circuit breakers reconfigured to maintain power 

 User changes some inputs 

 The first circuit breaker recovers 

 User turns off a generator 

 A bus loses power 

 

This error 
does not exist 

in onboard 
system 
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Synchrony hypothesis 

macrostep

microsteps

inputs outputs

 No new inputs within macrostep 

 Macrostep encoded as a sequence of transitions 

 Statecharts, Esterel [Berry & Gonthier 92], Lustre 
[Halbwachs et al. 92], etc. 

 

Mutual Exclusion of Transitions 

 Many “concurrent” 

transitions are sequential 

 Determine using static 

analysis 

 Use this to prune 

backward search 

 

 Generally unclear 

whether forward or 

backward search is 

better 

 Forward search 

 Often good for low-

level hardware. 

 But always bad for us; 

large BDDs  
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0 1

x[c]/y

0 1

y

A

B

A Disadvantage of Backward Search 

 Visiting unreachable states 

 

 

 

 

 

 

 Find invariants that are small as BDDs and effective in 

reducing main BDD sizes 

 Often from the domain itself  

 

Y
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Y
1

Y
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Reachable States
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Initial EPD Analyses Failed 
29 

 Even though it has fewer states than TCAS II 

 Main difference in synchronization 

 TCAS used “oblivious” synchronization –every external 

event took the same number of state transitions 

 EPD used “non-oblivious” synchronization 

 Solution: convert non-oblivious to oblivious and 

maintain (most) properties    

 TCAS II EPD System 

State space 230 bits, 1060 states 90 bits, 1027 states 
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Oblivious Synchronization (TCAS II) 

A

B

0 1

x[c]/y

x[c]/y
x[c]/y x[c]/y

0 1

y[A in 1]

y[A in 0]
y[A in 0] y[A in 1]

 y signals completion of machine A 

 Macrostep length: 2 

x  y  stable  

 

Non-Oblivious Synchronization (EPD) 

0 1

x[c]/y

0 1

y

A

B

 

 y signals state change in machine A  

 Macrostep length: 1 or 2 

 x  y  stable 

 x  stable  

 

 

Oblivious Synchronization 

 Backward search yields small BDDs 

 Event sequence always identical: every macro-step 

has the same length 

x y,z w z

x y,z w z

x y,z w z
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Non-Oblivious Synchronization 

 Backward search leads to 
(much) larger BDDs 

 Basic solution:  Automatic 
semantics-preserving 
transformation 

 Add stuttering states to make 
every macro-step of equal 
length 

 Preserve most properties, e.g., 
invariants and eventualities. 
[Lamport 83, Browne et al. 89] 

 Increase # states and # state 
variables 

 Increase # iterations to reach 
fixed points 

 

 

x y,z w z

x w z

x

Overall Effects on TCAS II 

0

1

2

3

4

5

6

7

8

9

10

Min.

P1 P2 P3 P4 P5 P6

Without pruning

With pruning

>> 1 hour 
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Some Lessons Learned 
35 

 Focus on restricted models that people care about 

 Exploit high-level knowledge to improve analysis 

 Synchronization, environmental assumptions, etc. 

 In addition to low-level BDD tricks 

 Combine static analysis and symbolic model 

checking 

 Help understand system behaviors 

 In addition to verification/falsification 
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SLAM and SDV 
36 

 Technically interesting: how to effectively use model 

checking to establish useful properties of an 

important class of C programs 

 

 Sociologically interesting: what it takes to transfer 

technology – it’s an ecosystem of sorts 

 A much broader view of the ecosystem of creating 

major high-tech industries can be found in Innovation in 

Information Technology, The National Academies Press, 

2003 (http://www.nap.edu/catalog.php?record_id=10795) 
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Basic story 
37 

 Third-party device drivers caused a disproportionate 

number of “blue screens” for Windows – costly in time 

and effort, as well as in reputation for Microsoft 

 Are major causes of the device driver errors checkable 

automatically even though arbitrary C code isn’t fully 

checkable: infinite paths, aliasing, … 

 Found an abstraction of drivers and properties to check 

that allowed a combination of model checking and 

symbolic execution to identify major classes of errors in 

practice 
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Evaluation and examples 

 Applied SDV to 126 WDM 

drivers (storage, USB, 1394-

interface, mouse, keyboard, 

…)  

 Well tested, code reviewed 

by experts, in use for years, 

26 were open source 

 48 to 130,000 LOC, 

average of 12KLOC 

 An initial study reported 206 

defects: investigation of 65, 

including working with the 

code owners, classified  53 

as true errors and 12 as 

false errors 

 In a path a driver marked an I/O request packet 

pending with a kernel API, but didn’t mark it in a 

related data structure 

 A driver’s dispatch routine returned STATUS 

PENDING but declared the I/O request packet 

as completed with IoCompleteRequest 

 A driver called IoStartNextPacket from 

within StartIo, which could lead to recursion 

exceeding the stack space 

 Early in the execution a device driver called an 

API that can raise the interrupt request level of 

the thread, and then (much later) called another 

kernel API that should not be called when the 

interrupt request level is raised (because it 

touches paged data) 

 IoCompleteRequest was called while 

holding a spinlock, which could cause deadlock 

 … 

38 

Abstraction for SDV 
39 

 Focused goal: check that device drivers make 

proper use of the driver API – not to check that the 

drivers do the right thing (or even anything useful) 

 Automatically abstracts the C code of a device 

driver 

 Guarantees that any API usage rule violation in the 

original code also appears in the abstraction 

 Then check the abstraction – which is smaller and 

more focused than the original code 
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Boolean predicate abstraction 
40 

 Translate to a representation that has all of C’s control flow 
constructs but only boolean variables that in turn track the 
state of relevant boolean expressions in the C code  

 These relevant expressions are selected based on 
predefined API usage rules constructed for device drivers 

 Consider a driver with 100 KLOC and complicated data 
structures and checking for an API usage rule intended to 
verify proper usage of a specific spinlock 

 Abstract to a program that tracks, at each line of code, the 
state of the spin lock as either locked or unlocked 

 This leads to a boolean program with around 200,000 
states, which is manageable by model checking 
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API usage rules 

 A state machine with two 

components 

 a static set of state 

variables (a C struct)  

 a set of events and state 

transitions 

 On right: rule for the proper 

usage of spin locks 

 one state variable  

 two events on which state 

transitions happen – 

returns of calls to 

acquire and 

release 

state { enum {Unlocked, Locked} 

        state = Unlocked; 

} watch KeAcquireSpinLock.$1; 

KeAcquireSpinLock.return [guard $1] { 

  if ( state == Locked ) { 

    error; 

  } else { 

    state = Locked; 

  } 

} 

KeReleaseSpinLock.return [guard $1] { 

  if ( state == Unlocked ) { 

     error; 

  } else { 

    state = Unlocked; 

  } 

} 

41 

Overall process (beyond abstraction) 
42 

 Given a boolean program with an error state, check 

whether or not the error state is reachable – BDD-

based model-checking 

 If the checker identifies an error path that is a feasible 

execution path in the original C, then report an error 

 If the path is not feasible then refine the boolean 

program to eliminate the false path 

 Use symbolic execution and a theorem prover to find a 

set of predicates that eliminates the false error path 
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Overview of process 
43 

Figure from “Thorough Static Analysis of Device Drivers” (Ball et al. EuroSys 06) 
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A hot topic: many efforts including… 
44 

 BLAST: Berkeley Lazy Abstraction Software Verification Tool 
(http://mtc.epfl.ch/software-tools/blast/) 

 “The goal … is to be able to check that software satisfies behavioral properties of the 
interfaces it uses. [It] uses counterexample-driven automatic abstraction refinement to 
construct an abstract model which is model checked for safety properties. The abstraction 
is constructed on-the-fly, and only to the required precision.” 

 VeriSoft (http://cm.bell-labs.com/who/god/verisoft/) 

 “… automatically searches for coordination problems (deadlocks, etc.) and assertion 
violations in a software system by generating, controlling, and observing the possible 
executions and interactions of all its components.” 

 Java PathFinder (http://javapathfinder.sourceforge.net/) 

 “[It] is a Java Virtual Machine that is used as an explicit state software model checker, 
systematically exploring all potential execution paths of a program to find violations of 
properties like deadlocks or unhandled exceptions. … [A] model checker has to employ 
flexible heuristics and state abstractions. JPF is unique in terms of its configurability and 
extensibility, and hence is a good platform to explore new ways to improve scalability.” 
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Coming soon… 
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45 

 Model checking has really taken off in some 

dimensions 

 In particular, there has been a lot of work 

connecting automated test generation and model 

checking (along with symbolic evaluation, etc.) 

 We’ll come back to this after we do an overview of 

some key software testing basics 


