
4/6/2011

1

CSE503:

SOFTWARE ENGINEERING
COMPLEXITY, PROVING ADTS

David Notkin

Spring 2011

But first… from today’s Seattle Times
2011.5.4

503 11sp © UW CSE • D. Notkin

2

“Industry experts believed they knew where to look
for crack-inducing metal fatigue on aging airplanes,
but the in-flight rupture of a Southwest Airlines Boeing
737 on Friday has raised concerns about part of the
fuselage they previously thought wasn't vulnerable.

“A similar hole opened on a Southwest 737 only 21
months ago, and then on an American Airlines 757
last year, raising awareness that metal fatigue can
cause the aluminum skin to separate at the so-called
lap joints, where panels are spliced together.”

Software complexity

503 11sp © UW CSE • D. Notkin

3

First, some common

software complexity

measures

Then, why they are weak

measures and (perhaps) a

way forward

From last lecture – complexity

in the “why is it hard?” sense

Today: “how complex” is a

piece of software?

Lines of code (LOC, KLOC, MLOC)

503 11sp © UW CSE • D. Notkin

4

 Count the lines, often omitting comments and/or

omitting blank lines

 Lines vs. statements

 Delivered vs. total (including tests, etc.)

 Productivity: LOC/person/time

 I’ve seen published numbers ranging from ~2K-8K

LOC/person/year

 Sensible?
"I have made this letter longer than usual, because I

lack the time to make it short.” –Blaise Pascal

4/6/2011

2

Halstead software science metrics

503 11sp © UW CSE • D. Notkin

5

 V = N log2(n) Volume is intended to capture the size of the implementation

 Making N choices from the vocabulary – assuming that humans do logarithmic search –

leads to the formula

 “The volume of a function should be at least 20 and at most 1000. The volume of a

parameterless one-line function that is not empty; is about 20. A volume greater than

1000 tells that the function probably does too many things.” [verifysoft.com]

 D = (n1 / 2) (N2 / n2) Difficulty is proportional to the unique operators and the ratio

of total operands to the number of operands

 The intent of the second part is based on a belief that repeated use of operands is more

error-prone

 E = V D Effort to implement or understand a program

 ...

n1 = #distinct operators n2 = #distinct operands n = n1 + n2 “vocabulary”

N1 = total # of operators N2 = total # of operands N = N1 + N2 “length”

Cyclomatic complexity (McCabe)

503 11sp © UW CSE • D. Notkin

6

 Take the CFG and find the number of edges (E),
number of nodes (N), and the number of connected
components (P)

 Connected components are subgraphs for which there is a
path between any two vertices

 The cyclomatic complexity is M = E − N + 2P and is
intended to measure the number of linearly
independent paths through a program’s source code

 #tests (branch coverage) M #tests (path coverage)

 Question: should the complexity include method
dispatch in OOP?

Examples

503 11sp © UW CSE • D. Notkin

7

• E = 9

• N = 8

• P = 1

• M = 3

http://en.wikipedia.org/wiki/Cyclomatic_complexity http://hissa.nist.gov/HHRFdata/Artifacts/ITLdoc/235/chapter3.htm

M = 8

Software structure metrics
Henry and Kafura

503 11sp © UW CSE • D. Notkin

8

 Measures complexity in terms of fan-in and fan-out

of procedures

 fan-in: the number of local flows into a procedure plus

the number of data structures accessed.

 fan-out: the number of local flows out a procedure plus

the number of data structures that the procedure

modifies.

 Complexity is L2 FI FO

Where L is the length of a procedure

http://en.wikipedia.org/wiki/Cyclomatic_complexity
http://en.wikipedia.org/wiki/Cyclomatic_complexity
http://hissa.nist.gov/HHRFdata/Artifacts/ITLdoc/235/chapter3.htm
http://hissa.nist.gov/HHRFdata/Artifacts/ITLdoc/235/chapter3.htm

4/6/2011

3

And many more

503 11sp © UW CSE • D. Notkin

9

 Variants of these

 Some incremental improvements

 Some extending to interprocedural complexity

 Others that measure

 Coupling and cohesion

 Data complexity

 Data flow complexity

 …

 Function points and feature points – intended to
measure the function of a system as perceived by users,
without reference to the implementation

So?

503 11sp © UW CSE • D. Notkin

10

 Although there is somewhat mixed data, it appears
that most of these measures are proportional to
LOC

 “Les Hatton claimed recently (Keynote at TAIC-PART
2008, Windsor, UK, Sept 2008) that McCabe
Cyclomatic Complexity has the same prediction
ability as lines of code.” –Wikipedia [cyclomatic complexity]

 Also, how “actionable” the information is has always
confused me: if you are told your program is an “8”
what are you supposed to do?

A hypothesis

503 11sp © UW CSE • D. Notkin

11

 Every complexity measure I’ve seen is based entirely on the

static program (except feature/function points, which don’t

consider a program directly)

 If complexity measures are to have any real utility, it seems

that they must also consider the relationship between the

program and its behaviors

 That is, the way the developer associates behaviors with a program

is material to complexity, but is ignored by the literature

 It is also imaginable that this measure would be “actionable”

by identifying specific dependences that make this mapping

complex – they could perhaps be addressed similarly to

dependences that preclude parallelization

Project(s)?

503 11sp © UW CSE • D. Notkin

12

 Any attempt at trying to make this notion more precise
would be terrific

 Maybe a simple model and some empiric data

 Showing that a reasonable model is proportional to
LOC would weaken my hypothesis

 Stop by and chat if you’re interested

 Fits into NSF-funded work with Reid Holmes

 ICSE 2011: “Identifying Program, Test, and Environmental
Changes That Affect Behaviour”

 Potential quals project

http://www.cs.uwaterloo.ca/~rtholmes/papers/icse_2011_holmes.pdf
http://www.cs.uwaterloo.ca/~rtholmes/papers/icse_2011_holmes.pdf
http://www.cs.uwaterloo.ca/~rtholmes/papers/icse_2011_holmes.pdf
http://www.cs.uwaterloo.ca/~rtholmes/papers/icse_2011_holmes.pdf

4/6/2011

4

What is this?

503 11sp © UW CSE • D. Notkin

13

01000100

ASCII

D

short

68

mask

FTFFFTFF

Excess-8

60
Java byte-code

fstore_1

Gray

code

Gray

scale

Color

scale

Types

503 11sp © UW CSE • D. Notkin

14

 Without getting precise, types are used to interpret

and manipulate the bit patterns – that is, they give

them (some level of) meaning

 “Concrete” types manipulate the information in

memory directly

 Abstract types define a protocol for manipulating

instances of those types, but they do not define an

implementation

Abstract data type = objects + operations

503 11sp © UW CSE • D. Notkin

15

 The only operations on objects of the type are those provided

by the abstraction

 The implementation is hidden

 We need to show that the abstraction and the implementation

are each “correct” … and properly related

Big picture

503 11sp © UW CSE • D. Notkin

16

Elementabstract Element’abstract

Elementconcrete Element’concrete

For every

abstract operation

For every

corresponding

concrete operation

Abstraction

function (AF)

 It commutes [What is purple and commutes?]

 AF gives an abstract meaning to concrete

representations – more soon

4/6/2011

5

An Abelian grape (sorry)

503 11sp © UW CSE • D. Notkin

17

math.asu.edu

Specifying ADTs

503 11sp © UW CSE • D. Notkin

18

 A common way is to define the abstract effect of

each operation (including constructors) using

formal/informal pre- and post-conditions

 Might see this using an extended JavaDoc

Example

503 11sp © UW CSE • D. Notkin

19

// Overview: An IntSet is a mutable, unbounded set of integers.

class IntSet {

// effects: makes a new IntSet = {}

public IntSet()

// returns: true if x this

// else returns false

public boolean contains(int x)

// effects: thispost = thispre {x}

public void add(int x)

// effects: thispost = thispre - {x}

public void remove(int x)

…

Algebraic specifications
From Stotts (http://www.cs.unc.edu/~stotts/723/adt.html)

503 11sp © UW CSE • D. Notkin

20

 Define a sort – give signatures of operations

(you’ve seen this kind of thing before in typed OO

and functional languages)

sort IntSet imports Int, Bool
signatures

new : -> IntSet
insert : IntSet × Int -> IntSet
member : IntSet × Int -> Bool
remove : IntSet × Int -> IntSet

math.asu.edu
math.asu.edu
http://www.cs.unc.edu/~stotts/723/adt.html

4/6/2011

6

Define axioms

503 11sp © UW CSE • D. Notkin

21

 “Just” like high school algebra

variables i, j : Int; s : IntSet
axioms

member(new(), i) = false
member(insert(s, j), i) =

if i = j then true else member(s, i)
remove(new(), i) = new()
remove(insert(s, j), i) =

if i = j then remove(s, i)
else insert(remove(s, i), j)

Are these really sets?

503 11sp © UW CSE • D. Notkin

22

 Posit stuff like…

 insert(insert(s, i), j) =
insert(insert(s, j), i)

 insert(insert(s, i), i) = insert(s, i)

 Prove from axioms

 Tons of issues about completeness, consistency,

equality (initial vs. final algebras), etc.

 But again, “just” like high school algebra

Proving specification properties

503 11sp © UW CSE • D. Notkin

23

 Regardless of the style of specification, proofs are

usually done inductively

 No information about the concrete representation

and implementation – rather, showing the

correctness of the protocol over the ADT’s

operations

LetterSet
case-insensitive character set [from Ernst]

// effects: creates an empty LetterSet

public LetterSet ();

// effects: thispost =
// if (c1 thispre | toLowerCase(c1) = toLowerCase(c)

// then thispre else thispre {c}
public void insert (char c);

// effects: thispost = thispre {c}

public void delete (char c);

// returns: (c this)

public boolean member (char c);

503 11sp © UW CSE • D. Notkin

24

4/6/2011

7

Prove desirable property of LetterSet
Large enough LetterSet contains two distinct characters

Prove: |S|>1 (c1,c2S | [toLowerCase(c1) toLowerCase(c2)])

 Base case: S = , vacuously true

 Inductive case: S was produced by a call of the form T.insert(c)

Assume: |T|>1 (c3,c4T [toLowerCase(c3) toLowerCase(c4)])

Show: |S|>1 (c1,c2S [toLowerCase(c1) toLowerCase(c2)])
where S = T.insert(c)

Remember insert’s post-condition:
thispost = if (c1 thispre | toLowerCase(c1) = toLowerCase(c)

then thispre else thispre {c}

 For inductive case, consider the two possibilities for S
 If S = T, the theorem holds by induction

 If S = T {c}, there are three cases

 |T|=0: Vacuously true

 |T|≥1: T did not contain a char of toLowerCase(c), so the theorem holds by
the meaning of union

 |T|>1: By inductive assumption, T contains different letters, so by the
meaning of union, T {c} also contains different letters

25

Now: Assume abstraction is correct

503 11sp © UW CSE • D. Notkin

26

 Abstraction function (AF): Ec→ Ea

Maps a concrete object to an abstract value

 Defines how the data structure is to be interpreted

Oh, that’s a “D”, that’s an fstore_1, that’s a 68, etc.

 Representation invariant (RI): a boolean predicate
characterizing legal concrete representations

 States data structure well-formedness

 In essence, defines the domain of AF

 Captures information that must be shared across
implementations of multiple operations

CharSet Abstraction
A finite mutable set of Characters[From Ernst]

27

// Overview: A CharSet is a finite mutable set of Characters

// effects: creates a fresh, empty CharSet

public CharSet ()

// effects: thispost = thispre {c}

public void insert (Character c);

// effects: thispost = thispre - {c}

public void delete (Character c);

// returns: (c this)

public boolean member (Character c);

// returns: cardinality of this

public int size ();

503 11sp © UW CSE • D. Notkin

A CharSet implementation
28

class CharSet {

private List<Character> elts

= new ArrayList<Character>();

public void insert(Character c) {

elts.add(c);

}

public void delete(Character c) {

elts.remove(c);

}

public boolean member(Character c) {

return elts.contains(c);

}

public int size() {

return elts.size();

}

}

CharSet s = new CharSet();

Character a

= new Character(„a‟);

s.insert(a);

s.insert(a);

s.delete(a);

if (s.member(a))

// print “wrong”;

else

// print “right”;

503 11sp © UW CSE • D. Notkin

4/6/2011

8

The RI can help identify an error

 Perhaps delete is wrong

 It should remove all occurrences

 Perhaps insert is wrong

 It should not insert a character that is already there

class CharSet {
// Rep invariant: elts has no nulls and no

duplicates
private List<Character> elts;
…

 Or…

 indices i of elts . elts.elementAt(i) ≠ null

 indices i, j of elts . i ≠ j
elts.elementAt(i).equals(elts.elementAt(j))

29

503 11sp © UW CSE • D. Notkin

Where’s the error?
30

// Rep invariant: elts has no nulls and no duplicates

public void insert(Character c) {

elts.add(c);

}

public void delete(Character c) {

elts.remove(c);

}

503 11sp © UW CSE • D. Notkin

The RI constrains structure, not meaning

 Another implementation of insert that preserves the RI

public void insert(Character c) {

Character cc = new Character(encrypt(c));

if (!elts.contains(cc))

elts.addElement(cc);

}

public boolean member(Character c) {

return elts.contains(c);

}

 The program is wrong … call on the AF!

31

503 11sp © UW CSE • D. Notkin

Abstraction function
concrete to abstract value mapping

 AF(CharSet this) = { c | c is contained in this.elts }

 set of Characters represented by elements contained in this.elts

 Typically not executable, but useful to reason about client behavior

 Helps reason about the semantics of insert
// effects: thispost = thispre {c}
public void insert (Character c);

 Helps identify a problem

 Applying the AF to the result of the call to insert yields

AF(elts) {encrypt(‘a’)}

 Consider the following reasonable AF

 AF(this) = { c | encrypt(c) is contained in this.elts }

 AF(this) = { decrypt(c) | c is contained in this.elts }

32

503 11sp © UW CSE • D. Notkin

4/6/2011

9

“Placing blame” using AF

503 11sp © UW CSE • D. Notkin

33

 AF(CharSet this) = { c | c is contained in this.elts }

 Consider a call to insert:

 On entry, the meaning is AF(thispre) ≈ eltspre

 On exit, the meaning is AF(thispost) = AF(thispre)

{encrypt(‘a’)}

 Does this AF fix things?

AF(this) = { c | encrypt(c) is contained in this.elts }

= { decrypt(c) | c is contained in this.elts }

Some final odds and ends

503 11sp © UW CSE • D. Notkin

34

 Looking at these examples using the commutative
diagram may help clarify any confusions

 Or ask!

 AF’s can be maintained across fairly complicated
implementations that (for example) reorganize
dynamically for performance

 Multiple concrete values still map to the same abstract value

 Why map concrete to abstract?

 It’s not a function in the other direction

 Ex: lists [a,b] and [b,a] each represent the set {a, b}

 It’s not as useful in the other direction

