4/6/2011

But first... from today’s Seattle Times

2011.5.4
| 2|

“Industry experts believed they knew where to look
for crack-inducing matal fatinua on aging airplanes,
but the in-flight r

‘hwest Airlines Boeing
737 on Friday hc é i S’/m about part of the
fuselage they prek wasn't vulnerable.

“A similar hole of hwest 737 only 21
CSE503: months ago, and rican Airlines 757
SOFTWARE ENGINEERING last year, raising awareness that metal fatigue can
cause the aluminum skin to separate at the so-called
lap joints, where panels are spliced together.”

David Notkin
Spring 2011

503 11sp © UW CSE * D. Notkin

Software complexity Lines of code (LOC, KLOC, MLOC)

Complexity . o Count the lines, often omitting comments and/or

. ! R OFrom last lecture — complexity

“Software entities are meore complex for their size HeH 1

on prarhcaps oy ofher hmon construc, becouse o in the “why is it hard?” sense omlﬁlng blank lines

:HLHUT:" alike (ar IGT:V :»:. Vho ﬁ.;mﬂﬂo:r . « . )

nnau).‘ n Ih?msn'ed software systems di"u': DTOddy: how complex Isa O Llnes Vvs. Stqtements

profaundly frem computors, buldings, or automabiles, iece of software? . . .

where repected slements cbowd?” P 0 Delivered vs. total (including tests, etc.)

Complexity and people — Dikstra 0 Productivity: LOC/person/time
: 1The competent programmer Is fully aware of o I've seen published numbers ranging from ~2K-8K
OFirst, some common the limited size of his own skull.”
) 1 “Softwars it 50 complex that our poor head LOC/person/year
software complexity cannot cope with it i all. Therefors, we have
to use oll possible means and methads 1o Try fo

measures control this complexity.”
UThen, why they are weak

measures and (perhaps) a

way forward 503 11sp © UW CSE * D. Notkin

503 11sp © UW CSE * D. Notkin




4/6/2011

Halstead software science metrics

nl = #disti n2 = #disti d n=nl+n2 “vocabulary”

N1 = total # of operators N2 = total # of operands N = NI + N2 “length”

V=N x logy(n) o Volume is infended fo capture the size of the implementation
Making N choices from the vocabulary — assuming that humans do logarithmic search —
leads fo the formula

“The volume of a function should be at least 20 and at most 1000. The volume of a
parameterless one-line function that is not empty; is about 20. A volume greater than
1000 tells that the function probably does too many things.” [verifysoft.com]

D=(n1/2)x(N2/n2) e Difficulty is proportional fo the unique operators and the ratio
of fotal operands fo the number of operands

The intent of the second part is based on a belief that repeated use of operands is more
error-prone

E=VxD o Effort fo implement or understand a program

503 115p © UW CSE * D. Notkin

Cyclomatic complexity (McCabe)

Take the CFG and find the number of edges (E),
number of nodes (N), and the number of connected
components (P)
Connected components are subgraphs for which there is a
path between any two vertices
The cyclomatic complexity is M = E =N + 2P and is
intended to measure the number of linearly
independent paths through a program’s source code
#tests (branch coverage) < M < #tests (path coverage)
Question: should the complexity include method
dispatch in OOP?2

503 11sp © UW CSE * D. Notkin

e o G

Examples STep=T=r==re=r==

zozm
[
w ~ ®©

503 11sp © UW CSE * D. Notkin

Software structure metrics
Henry and Kafura

Measures complexity in terms of fan-in and fan-out
of procedures

fan-in: the number of local flows into a procedure plus
the number of data structures accessed.

fan-out: the number of local flows out a procedure plus
the number of data structures that the procedure
modifies.

Complexity is L2 x FI x FO
Where L is the length of a procedure

503 11sp © UW CSE * D. Notkin



http://en.wikipedia.org/wiki/Cyclomatic_complexity
http://en.wikipedia.org/wiki/Cyclomatic_complexity
http://hissa.nist.gov/HHRFdata/Artifacts/ITLdoc/235/chapter3.htm
http://hissa.nist.gov/HHRFdata/Artifacts/ITLdoc/235/chapter3.htm

4/6/2011

And many more

Variants of these

Some incremental improvements

Some extending to interprocedural complexity
Others that measure

Coupling and cohesion

Data complexity

Data flow complexity

Function points and feature points — intended to
measure the function of a system as perceived by users,
without reference to the implementation

503 115p © UW CSE * D. Notkin

So?

Although there is somewhat mixed data, it appears

that most of these measures are proportional to
LOC

“Les Hatton claimed recently (Keynote at TAIC-PART
2008, Windsor, UK, Sept 2008) that McCabe
Cyclomatic Complexity has the same prediction
ability as lines of code.” —wikipedia [cyclomatic complexity]
Also, how “actionable” the information is has always
confused me: if you are told your program is an “8”
what are you supposed to do?

503 11sp © UW CSE * D. Notkin

A hypothesis

Every complexity measure I've seen is based entirely on the
static program (except feature /function points, which don’t
consider a program directly)

If complexity measures are to have any real utility, it seems
that they must also consider the relationship between the
program and its behaviors
That is, the way the developer associates behaviors with a program
is material to complexity, but is ignored by the literature
It is also imaginable that this measure would be “actionable”
by identifying specific dependences that make this mapping
complex — they could perhaps be addressed similarly to
dependences that preclude parallelization

503 11sp © UW CSE * D. Notkin

Project(s)?

Any attempt at trying to make this notion more precise
would be terrific

Maybe a simple model and some empiric data

Showing that a reasonable model is proportional to
LOC would weaken my hypothesis

Stop by and chat if you're interested
Fits into NSF-funded work with Reid Holmes
ICSE 2011: *

”

Potential quals project

503 11sp © UW CSE * D. Notkin



http://www.cs.uwaterloo.ca/~rtholmes/papers/icse_2011_holmes.pdf
http://www.cs.uwaterloo.ca/~rtholmes/papers/icse_2011_holmes.pdf
http://www.cs.uwaterloo.ca/~rtholmes/papers/icse_2011_holmes.pdf
http://www.cs.uwaterloo.ca/~rtholmes/papers/icse_2011_holmes.pdf

4/6/2011

What is thise

"
= 01000100 Gray

scale
Java byte-code
fstore_1
Color
scale

503 115p © UW CSE * D. Notkin

Types
[

memory directly

implementation

01 Without getting precise, types are used to interpret
and manipulate the bit patterns — that is, they give
them (some level of) meaning

0 “Concrete” types manipulate the information in

0 Abstract types define a protocol for manipulating
instances of those types, but they do not define an

503 11sp © UW CSE * D. Notkin

Abstract data type = objects + operations

- Point
e, [F]
s rest of \ l._
\F program @ @
° [
. trans e o ® @
N scale_| rot ® g
) abstraction
clients barrier implementation

The only operations on objects of the type are those provided
by the abstraction

The implementation is hidden

We need to show that the abstraction and the implementation

are each “correct” ... and properly related

503 11sp © UW CSE * D. Notkin

Big picture
[

EIeme"'(oncre’e

E|ememdbwﬂﬂ

QO It commutes [What is purple

representations — more soon

0 AF gives an abstract meaning to concrete

and commutes?]

abstract operation

> Element’pgract

\Ele m:e N concrete

For every

For every
corresponding
concrete operation

503 11sp © UW CSE * D. Notkin




4/6/2011

// Overview: An IntSet is a mutable, unbounded set of integers.
class IntSet {

// effects: makes a new IntSet = {}

public IntSet()

// returns: true if x € this
1/ else returns false

public boolean contains(int x)

// effects: this,,, = this,, U {x}
public void add(int x)
// effects: this,

post = thisp, - {x}

public void remove (int x)

503 11sp © UW CSE * D. Notkin

An Abelian grape (sory) Specifying ADTs
| 17 ] | 1e
|‘Abal'a" groups of order 8. with subgroup fattices | 0 A common way is to define the abstract effect of
each operation (including constructors) using
formal/informal pre- and post-conditions
is 0 Might see this using an extended JavaDoc
&
&
1)
503 11sp © UW CSE * D. Notkin 503 11sp © UW CSE * D. Notkin
Algebraic specifications
Example
From Stotts ( )
=

0 Define a sort — give signatures of operations
(you've seen this kind of thing before in typed OO
and functional languages)

sort IntSet imports Int, Bool

signatures
new : -> IntSet
insert : IntSet x Int -> IntSet
member IntSet x Int -> Bool
remove IntSet x Int -> IntSet

503 11sp © UW CSE * D. Notkin



math.asu.edu
math.asu.edu
http://www.cs.unc.edu/~stotts/723/adt.html

4/6/2011

Define axioms

“Just” like high school algebra

variables i, j : Int; s : IntSet
axioms
member(new(), i) = false
member(insert(s, j), i) =
if i = j then true else member(s, i)
remove(new(), i) = new()
remove(insert(s, j), i) =
if i = j then remove(s, i)
else insert(remove(s, i), j)

503 115p © UW CSE * D. Notkin

Are these really sets?

Posit stuff like...
insert(insert(s, i), j)
insert(insert(s, j), i)
insert(insert(s, i), i) = insert(s, i)

Prove from axioms

Tons of issues about completeness, consistency,
equality (initial vs. final algebras), etc.

But again, “just” like high school algebra

503 11sp © UW CSE

* D. Notkin

Proving specification properties

Regardless of the style of specification, proofs are
usually done inductively

No information about the concrete representation
and implementation — rather, showing the
correctness of the protocol over the ADT’s
operations

503 11sp © UW CSE * D. Notkin

LetterSet

case-insensitive character set [from Ernst]

// effects: creates an empty LetterSet
public LetterSet ( );

// effects: this,,

1/ if (3¢, e thisy,
// then this,, else this,, v {c}
public void insert (char c);

// effects: this, = this,. - {c}
public void delete (char c);

// returns: (c e this)
public boolean member (char c);

503 11sp © UW CSE

| toLowerCase(c,) = toLowerCase(c)

* D. Notkin




4/6/2011

Prove desirable property of LetterSet
Large enough LetterSet contains two distinct characters

Prove: |S|>1 = (3c;,c,eS | [toLowerCase(c,) # toLowerCase(c,)])

0 Basecase:S = J, vacuously true
O Inductive case: S was produced by a call of the form T.insert(c)
Assume: |T|>1 = (3c;,c,eT [toLowerCase(c;) # tolLowerCase(c,)])
Show: [S|>1 = (3¢;,c,eS [tolLowerCase(c,) # tolLowerCase(c,)])
where S = T.insert(c)

Remember insert’s post-condition:
this,, = if (3 c;e this,. | toLowerCase(c;) = tolLowerCase(c)
then this,.. &lse this,. v {c}

O  For inductive case, consider the two possibilities for S
Q If S = T, the theorem holds by induction
Q 1fS = T U {c}, there are three cases
=
a 71| did not contain a char of toLowerCase(c), so the theorem holds by
the meaning of union

Vacuously true

Q |T|>1: By inductive assumption, T contains different letters, so by the
meaning of union, T U {c} also contains different letters

Now: Assume abstraction is correct

0 Abstraction function (AF): E.— E,
Maps a concrete object to an abstract value
Defines how the data structure is to be interpreted
Oh, that’s a “D”, that’s an fstore_1, that’s a 68, etc.
0 Representation invariant (RI): a boolean predicate
characterizing legal concrete representations

States data structure well-formedness
u In essence, defines the domain of AF

Captures information that must be shared across
implementations of multiple operations

503 11sp © UW CSE * D. Notkin

CharSet Abstraction

A finite mutable set of Characters[From Ernst]

// Overview: A CharSet is a finite mutable set of Characters

// effects: creates a fresh, empty CharSet
public CharSet ( )

// effects: this,g = this,. U {c}
public void insert (Character c);

// effects: this, = this,, - {c}
public void delete (Character c);

// returns: (c e this)
public boolean member (Character c);

// returns: cardinality of this
public int size ( );

503 11sp © UW CSE * D. Notkin

A CharSet implementation

class CharSet {
private List<Character> elts

CharSet s = new CharSet();

= new ArrayList<Character>();
Character a

public void insert(Character c) { = new Character(‘a’);
elts.add(c); s.insert(a);
} s.insert(a);

public void delete(Character c) { s.delete(a) ;
elts.remove (c) ; if (s.member(a))

} // print “wrong”;

else

public boolean member (Character c) { /7 print “right”;

return elts.contains(c);

public int size() {
return elts.size();

503 11sp © UW CSE * D. Notkin




4/6/2011

The Rl can help identify an error
=]

Perhaps delete is wrong
It should remove all occurrences
Perhaps insert is wrong
It should not insert a character that is already there
class CharSet {
// Rep invariant: elts has no nulls and no

duplicates
private List<Character> elts;

Or...
V indices i of elts . elts.elementAt(i) # null
V indices i, j of elts . i # j =
—elts.elementAt(i).equals(elts.elementAt(j))

503 115p © UW CSE * D. Notkin

Where’s the error?

// Rep invariant: elts has no nulls and no duplicates
public void insert(Character c) {
elts.add(c);
}
public void delete (Character c) {

elts.remove(c) ;

503 11sp © UW CSE * D. Notkin

The Rl constrains structure, not meaning
Lo ]

Another implementation of insert that preserves the RI

public void insert(Character c) {
Character cc = new Character (encrypt(c));
if ('elts.contains(cc))
elts.addElement (cc) ;
}
public boolean member (Character c) {
return elts.contains(c);

The program is wrong ... call on the AF!

503 11sp © UW CSE * D. Notkin

Abstraction function

concrete to abstract value mapping

AF(CharSet this) = { ¢ | ¢ is contained in this.elts }

set of Characters rep d by el {in this.elts

Typically not executable, but useful to reason about client behavior

Helps reason about the semantics of insert
// effects: this, = this,. v {c}
public void insert (Character c);
Helps identify a problem
Applying the AF to the result of the call to insert yields
AF(elts) u {encrypt(‘a’)}
Consider the following reasonable AF
AF(this) = { c | encrypt(c) is contained in this.elts }
AF(this) = { decrypt(c) | c is contained in this.elts }

503 11sp © UW CSE * D. Notkin




4/6/2011

“Placing blame” using AF

AF(CharSet this) = { ¢ | ¢ is contained in this.elts }
Consider a call to insert:
On entry, the meaning is AF(this,..) = elts,.

On exit, the meaning is AF(this,,) = AF(this,.) U
{encrypt(‘a’)}

Does this AF fix things2

AF(this) = { ¢ | encrypt(c) is contained in this.elts }

= { decrypt(c) | cis contained in this.elts }

503 115p © UW CSE * D. Notkin

Some final odds and ends

Looking at these examples using the commutative
diagram may help clarify any confusions

Or ask!
AF’s can be maintained across fairly complicated
implementations that (for example) reorganize
dynamically for performance

Multiple concrete values still map to the same abstract value
Why map concrete to abstract?

It's not a function in the other direction
Ex: lists [a,b] and [b,a] each represent the set {q, b}
It's not as useful in the other direction

503 11sp © UW CSE * D. Notkin




