
4/6/2011

1

CSE503:

SOFTWARE ENGINEERING
COMPLEXITY, PROVING ADTS

David Notkin

Spring 2011

But first… from today’s Seattle Times
2011.5.4

503 11sp © UW CSE • D. Notkin

2

“Industry experts believed they knew where to look
for crack-inducing metal fatigue on aging airplanes,
but the in-flight rupture of a Southwest Airlines Boeing
737 on Friday has raised concerns about part of the
fuselage they previously thought wasn't vulnerable.

“A similar hole opened on a Southwest 737 only 21
months ago, and then on an American Airlines 757
last year, raising awareness that metal fatigue can
cause the aluminum skin to separate at the so-called
lap joints, where panels are spliced together.”

Software complexity

503 11sp © UW CSE • D. Notkin

3

First, some common

software complexity

measures

Then, why they are weak

measures and (perhaps) a

way forward

From last lecture – complexity

in the “why is it hard?” sense

Today: “how complex” is a

piece of software?

Lines of code (LOC, KLOC, MLOC)

503 11sp © UW CSE • D. Notkin

4

 Count the lines, often omitting comments and/or

omitting blank lines

 Lines vs. statements

 Delivered vs. total (including tests, etc.)

 Productivity: LOC/person/time

 I’ve seen published numbers ranging from ~2K-8K

LOC/person/year

 Sensible?
"I have made this letter longer than usual, because I

lack the time to make it short.” –Blaise Pascal

4/6/2011

2

Halstead software science metrics

503 11sp © UW CSE • D. Notkin

5

 V = N  log2(n)  Volume is intended to capture the size of the implementation

 Making N choices from the vocabulary – assuming that humans do logarithmic search –

leads to the formula

 “The volume of a function should be at least 20 and at most 1000. The volume of a

parameterless one-line function that is not empty; is about 20. A volume greater than

1000 tells that the function probably does too many things.” [verifysoft.com]

 D = (n1 / 2)  (N2 / n2)  Difficulty is proportional to the unique operators and the ratio

of total operands to the number of operands

 The intent of the second part is based on a belief that repeated use of operands is more

error-prone

 E = V  D  Effort to implement or understand a program

 ...

n1 = #distinct operators n2 = #distinct operands n = n1 + n2 “vocabulary”

N1 = total # of operators N2 = total # of operands N = N1 + N2 “length”

Cyclomatic complexity (McCabe)

503 11sp © UW CSE • D. Notkin

6

 Take the CFG and find the number of edges (E),
number of nodes (N), and the number of connected
components (P)

 Connected components are subgraphs for which there is a
path between any two vertices

 The cyclomatic complexity is M = E − N + 2P and is
intended to measure the number of linearly
independent paths through a program’s source code

 #tests (branch coverage)  M  #tests (path coverage)

 Question: should the complexity include method
dispatch in OOP?

Examples

503 11sp © UW CSE • D. Notkin

7

• E = 9

• N = 8

• P = 1

• M = 3

http://en.wikipedia.org/wiki/Cyclomatic_complexity http://hissa.nist.gov/HHRFdata/Artifacts/ITLdoc/235/chapter3.htm

M = 8

Software structure metrics
Henry and Kafura

503 11sp © UW CSE • D. Notkin

8

 Measures complexity in terms of fan-in and fan-out

of procedures

 fan-in: the number of local flows into a procedure plus

the number of data structures accessed.

 fan-out: the number of local flows out a procedure plus

the number of data structures that the procedure

modifies.

 Complexity is L2  FI  FO

Where L is the length of a procedure

http://en.wikipedia.org/wiki/Cyclomatic_complexity
http://en.wikipedia.org/wiki/Cyclomatic_complexity
http://hissa.nist.gov/HHRFdata/Artifacts/ITLdoc/235/chapter3.htm
http://hissa.nist.gov/HHRFdata/Artifacts/ITLdoc/235/chapter3.htm

4/6/2011

3

And many more

503 11sp © UW CSE • D. Notkin

9

 Variants of these

 Some incremental improvements

 Some extending to interprocedural complexity

 Others that measure

 Coupling and cohesion

 Data complexity

 Data flow complexity

 …

 Function points and feature points – intended to
measure the function of a system as perceived by users,
without reference to the implementation

So?

503 11sp © UW CSE • D. Notkin

10

 Although there is somewhat mixed data, it appears
that most of these measures are proportional to
LOC

 “Les Hatton claimed recently (Keynote at TAIC-PART
2008, Windsor, UK, Sept 2008) that McCabe
Cyclomatic Complexity has the same prediction
ability as lines of code.” –Wikipedia [cyclomatic complexity]

 Also, how “actionable” the information is has always
confused me: if you are told your program is an “8”
what are you supposed to do?

A hypothesis

503 11sp © UW CSE • D. Notkin

11

 Every complexity measure I’ve seen is based entirely on the

static program (except feature/function points, which don’t

consider a program directly)

 If complexity measures are to have any real utility, it seems

that they must also consider the relationship between the

program and its behaviors

 That is, the way the developer associates behaviors with a program

is material to complexity, but is ignored by the literature

 It is also imaginable that this measure would be “actionable”

by identifying specific dependences that make this mapping

complex – they could perhaps be addressed similarly to

dependences that preclude parallelization

Project(s)?

503 11sp © UW CSE • D. Notkin

12

 Any attempt at trying to make this notion more precise
would be terrific

 Maybe a simple model and some empiric data

 Showing that a reasonable model is proportional to
LOC would weaken my hypothesis

 Stop by and chat if you’re interested

 Fits into NSF-funded work with Reid Holmes

 ICSE 2011: “Identifying Program, Test, and Environmental
Changes That Affect Behaviour”

 Potential quals project

http://www.cs.uwaterloo.ca/~rtholmes/papers/icse_2011_holmes.pdf
http://www.cs.uwaterloo.ca/~rtholmes/papers/icse_2011_holmes.pdf
http://www.cs.uwaterloo.ca/~rtholmes/papers/icse_2011_holmes.pdf
http://www.cs.uwaterloo.ca/~rtholmes/papers/icse_2011_holmes.pdf

4/6/2011

4

What is this?

503 11sp © UW CSE • D. Notkin

13

01000100

ASCII

D

short

68

mask

FTFFFTFF

Excess-8

60
Java byte-code

fstore_1

Gray

code

Gray

scale

Color

scale

Types

503 11sp © UW CSE • D. Notkin

14

 Without getting precise, types are used to interpret

and manipulate the bit patterns – that is, they give

them (some level of) meaning

 “Concrete” types manipulate the information in

memory directly

 Abstract types define a protocol for manipulating

instances of those types, but they do not define an

implementation

Abstract data type = objects + operations

503 11sp © UW CSE • D. Notkin

15

 The only operations on objects of the type are those provided

by the abstraction

 The implementation is hidden

 We need to show that the abstraction and the implementation

are each “correct” … and properly related

Big picture

503 11sp © UW CSE • D. Notkin

16

Elementabstract Element’abstract

Elementconcrete Element’concrete

For every

abstract operation

For every

corresponding

concrete operation

Abstraction

function (AF)

 It commutes [What is purple and commutes?]

 AF gives an abstract meaning to concrete

representations – more soon

4/6/2011

5

An Abelian grape (sorry)

503 11sp © UW CSE • D. Notkin

17

math.asu.edu

Specifying ADTs

503 11sp © UW CSE • D. Notkin

18

 A common way is to define the abstract effect of

each operation (including constructors) using

formal/informal pre- and post-conditions

 Might see this using an extended JavaDoc

Example

503 11sp © UW CSE • D. Notkin

19

// Overview: An IntSet is a mutable, unbounded set of integers.

class IntSet {

// effects: makes a new IntSet = {}

public IntSet()

// returns: true if x  this

// else returns false

public boolean contains(int x)

// effects: thispost = thispre  {x}

public void add(int x)

// effects: thispost = thispre - {x}

public void remove(int x)

…

Algebraic specifications
From Stotts (http://www.cs.unc.edu/~stotts/723/adt.html)

503 11sp © UW CSE • D. Notkin

20

 Define a sort – give signatures of operations

(you’ve seen this kind of thing before in typed OO

and functional languages)

sort IntSet imports Int, Bool
signatures

new : -> IntSet
insert : IntSet × Int -> IntSet
member : IntSet × Int -> Bool
remove : IntSet × Int -> IntSet

math.asu.edu
math.asu.edu
http://www.cs.unc.edu/~stotts/723/adt.html

4/6/2011

6

Define axioms

503 11sp © UW CSE • D. Notkin

21

 “Just” like high school algebra

variables i, j : Int; s : IntSet
axioms

member(new(), i) = false
member(insert(s, j), i) =

if i = j then true else member(s, i)
remove(new(), i) = new()
remove(insert(s, j), i) =

if i = j then remove(s, i)
else insert(remove(s, i), j)

Are these really sets?

503 11sp © UW CSE • D. Notkin

22

 Posit stuff like…

 insert(insert(s, i), j) =
insert(insert(s, j), i)

 insert(insert(s, i), i) = insert(s, i)

 Prove from axioms

 Tons of issues about completeness, consistency,

equality (initial vs. final algebras), etc.

 But again, “just” like high school algebra

Proving specification properties

503 11sp © UW CSE • D. Notkin

23

 Regardless of the style of specification, proofs are

usually done inductively

 No information about the concrete representation

and implementation – rather, showing the

correctness of the protocol over the ADT’s

operations

LetterSet
case-insensitive character set [from Ernst]

// effects: creates an empty LetterSet

public LetterSet ();

// effects: thispost =
// if ( c1  thispre | toLowerCase(c1) = toLowerCase(c)

// then thispre else thispre  {c}
public void insert (char c);

// effects: thispost = thispre  {c}

public void delete (char c);

// returns: (c  this)

public boolean member (char c);

503 11sp © UW CSE • D. Notkin

24

4/6/2011

7

Prove desirable property of LetterSet
Large enough LetterSet contains two distinct characters

Prove: |S|>1  (c1,c2S | [toLowerCase(c1)  toLowerCase(c2)])

 Base case: S = , vacuously true

 Inductive case: S was produced by a call of the form T.insert(c)

Assume: |T|>1  (c3,c4T [toLowerCase(c3)  toLowerCase(c4)])

Show: |S|>1  (c1,c2S [toLowerCase(c1)  toLowerCase(c2)])
where S = T.insert(c)

Remember insert’s post-condition:
thispost = if ( c1 thispre | toLowerCase(c1) = toLowerCase(c)

then thispre else thispre  {c}

 For inductive case, consider the two possibilities for S
 If S = T, the theorem holds by induction

 If S = T  {c}, there are three cases

 |T|=0: Vacuously true

 |T|≥1: T did not contain a char of toLowerCase(c), so the theorem holds by
the meaning of union

 |T|>1: By inductive assumption, T contains different letters, so by the
meaning of union, T  {c} also contains different letters

25

Now: Assume abstraction is correct

503 11sp © UW CSE • D. Notkin

26

 Abstraction function (AF): Ec→ Ea

Maps a concrete object to an abstract value

 Defines how the data structure is to be interpreted

Oh, that’s a “D”, that’s an fstore_1, that’s a 68, etc.

 Representation invariant (RI): a boolean predicate
characterizing legal concrete representations

 States data structure well-formedness

 In essence, defines the domain of AF

 Captures information that must be shared across
implementations of multiple operations

CharSet Abstraction
A finite mutable set of Characters[From Ernst]

27

// Overview: A CharSet is a finite mutable set of Characters

// effects: creates a fresh, empty CharSet

public CharSet ()

// effects: thispost = thispre  {c}

public void insert (Character c);

// effects: thispost = thispre - {c}

public void delete (Character c);

// returns: (c  this)

public boolean member (Character c);

// returns: cardinality of this

public int size ();

503 11sp © UW CSE • D. Notkin

A CharSet implementation
28

class CharSet {

private List<Character> elts

= new ArrayList<Character>();

public void insert(Character c) {

elts.add(c);

}

public void delete(Character c) {

elts.remove(c);

}

public boolean member(Character c) {

return elts.contains(c);

}

public int size() {

return elts.size();

}

}

CharSet s = new CharSet();

Character a

= new Character(„a‟);

s.insert(a);

s.insert(a);

s.delete(a);

if (s.member(a))

// print “wrong”;

else

// print “right”;

503 11sp © UW CSE • D. Notkin

4/6/2011

8

The RI can help identify an error

 Perhaps delete is wrong

 It should remove all occurrences

 Perhaps insert is wrong

 It should not insert a character that is already there

class CharSet {
// Rep invariant: elts has no nulls and no

duplicates
private List<Character> elts;
…

 Or…

  indices i of elts . elts.elementAt(i) ≠ null

  indices i, j of elts . i ≠ j 
elts.elementAt(i).equals(elts.elementAt(j))

29

503 11sp © UW CSE • D. Notkin

Where’s the error?
30

// Rep invariant: elts has no nulls and no duplicates

public void insert(Character c) {

elts.add(c);

}

public void delete(Character c) {

elts.remove(c);

}

503 11sp © UW CSE • D. Notkin

The RI constrains structure, not meaning

 Another implementation of insert that preserves the RI

public void insert(Character c) {

Character cc = new Character(encrypt(c));

if (!elts.contains(cc))

elts.addElement(cc);

}

public boolean member(Character c) {

return elts.contains(c);

}

 The program is wrong … call on the AF!

31

503 11sp © UW CSE • D. Notkin

Abstraction function
concrete to abstract value mapping

 AF(CharSet this) = { c | c is contained in this.elts }

 set of Characters represented by elements contained in this.elts

 Typically not executable, but useful to reason about client behavior

 Helps reason about the semantics of insert
// effects: thispost = thispre  {c}
public void insert (Character c);

 Helps identify a problem

 Applying the AF to the result of the call to insert yields

AF(elts)  {encrypt(‘a’)}

 Consider the following reasonable AF

 AF(this) = { c | encrypt(c) is contained in this.elts }

 AF(this) = { decrypt(c) | c is contained in this.elts }

32

503 11sp © UW CSE • D. Notkin

4/6/2011

9

“Placing blame” using AF

503 11sp © UW CSE • D. Notkin

33

 AF(CharSet this) = { c | c is contained in this.elts }

 Consider a call to insert:

 On entry, the meaning is AF(thispre) ≈ eltspre

 On exit, the meaning is AF(thispost) = AF(thispre) 

{encrypt(‘a’)}

 Does this AF fix things?

AF(this) = { c | encrypt(c) is contained in this.elts }

= { decrypt(c) | c is contained in this.elts }

Some final odds and ends

503 11sp © UW CSE • D. Notkin

34

 Looking at these examples using the commutative
diagram may help clarify any confusions

 Or ask!

 AF’s can be maintained across fairly complicated
implementations that (for example) reorganize
dynamically for performance

 Multiple concrete values still map to the same abstract value

 Why map concrete to abstract?

 It’s not a function in the other direction

 Ex: lists [a,b] and [b,a] each represent the set {a, b}

 It’s not as useful in the other direction

