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But first… from today’s Seattle Times
2011.5.4
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“Industry experts believed they knew where to look 
for crack-inducing metal fatigue on aging airplanes, 
but the in-flight rupture of a Southwest Airlines Boeing 
737 on Friday has raised concerns about part of the 
fuselage they previously thought wasn't vulnerable.

“A similar hole opened on a Southwest 737 only 21 
months ago, and then on an American Airlines 757 
last year, raising awareness that metal fatigue can 
cause the aluminum skin to separate at the so-called 
lap joints, where panels are spliced together.”

Software complexity
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First, some common 

software complexity 

measures

Then, why they are weak 

measures and (perhaps) a 

way forward

From last lecture – complexity 

in the “why is it hard?” sense

Today: “how complex” is a 

piece of software?

Lines of code (LOC, KLOC, MLOC)
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 Count the lines, often omitting comments and/or 

omitting blank lines

 Lines vs. statements

 Delivered vs. total (including tests, etc.)

 Productivity: LOC/person/time

 I’ve seen published numbers ranging from ~2K-8K 

LOC/person/year

 Sensible?
"I have made this letter longer than usual, because I 

lack the time to make it short.” –Blaise Pascal
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Halstead software science metrics
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 V = N  log2(n)        Volume is intended to capture the size of the implementation

 Making N choices from the vocabulary – assuming that humans do logarithmic search –

leads to the formula

 “The volume of a function should be at least 20 and at most 1000. The volume of a 

parameterless one-line function that is not empty; is about 20. A volume greater than 

1000 tells that the function probably does too many things.”  [verifysoft.com]

 D = ( n1 / 2 )  ( N2 / n2 )    Difficulty is proportional to the unique operators and the ratio 

of total operands to the number of operands

 The intent of the second part is based on a belief that repeated use of operands is more 

error-prone

 E = V  D  Effort to implement or understand a program

 ...

n1 = #distinct operators n2 = #distinct operands n = n1 + n2   “vocabulary”

N1 = total # of operators N2 = total # of operands N = N1 + N2        “length”

Cyclomatic complexity (McCabe)
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 Take the CFG and find the number of edges (E), 
number of nodes (N), and the number of connected 
components (P)

 Connected components are subgraphs for which there is a 
path between any two vertices

 The cyclomatic complexity is M = E − N + 2P and is 
intended to measure the number of linearly 
independent paths through a program’s source code

 #tests (branch coverage)  M  #tests (path coverage)

 Question: should the complexity include method 
dispatch in OOP?

Examples
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• E = 9

• N = 8

• P = 1

• M = 3

http://en.wikipedia.org/wiki/Cyclomatic_complexity http://hissa.nist.gov/HHRFdata/Artifacts/ITLdoc/235/chapter3.htm

M = 8

Software structure metrics
Henry and Kafura
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 Measures complexity in terms of fan-in and fan-out 

of procedures

 fan-in: the number of local flows into a procedure plus 

the number of data structures accessed. 

 fan-out: the number of local flows out a procedure plus 

the number of data structures that the procedure 

modifies. 

 Complexity is L2  FI  FO

Where L is the length of a procedure

http://en.wikipedia.org/wiki/Cyclomatic_complexity
http://en.wikipedia.org/wiki/Cyclomatic_complexity
http://hissa.nist.gov/HHRFdata/Artifacts/ITLdoc/235/chapter3.htm
http://hissa.nist.gov/HHRFdata/Artifacts/ITLdoc/235/chapter3.htm
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And many more
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 Variants of these

 Some incremental improvements

 Some extending to interprocedural complexity

 Others that measure

 Coupling and cohesion

 Data complexity

 Data flow complexity

 …

 Function points and feature points – intended to 
measure the function of a system as perceived by users, 
without reference to the implementation

So?
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 Although there is somewhat mixed data, it appears 
that most of these measures are proportional to 
LOC

 “Les Hatton claimed recently (Keynote at TAIC-PART 
2008, Windsor, UK, Sept 2008) that McCabe 
Cyclomatic Complexity has the same prediction 
ability as lines of code.” –Wikipedia [cyclomatic complexity]

 Also, how “actionable” the information is has always 
confused me: if you are told your program is an “8” 
what are you supposed to do?

A hypothesis
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 Every complexity measure I’ve seen is based entirely on the 

static program (except feature/function points, which don’t 

consider a program directly)

 If complexity measures are to have any real utility, it seems 

that they must also consider the relationship between the 

program and its behaviors

 That is, the way the developer associates behaviors with a program 

is material to complexity, but is ignored by the literature

 It is also imaginable that this measure would be “actionable” 

by identifying specific dependences that make this mapping 

complex – they could perhaps be addressed similarly to 

dependences that preclude parallelization

Project(s)?
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 Any attempt at trying to make this notion more precise 
would be terrific

 Maybe a simple model and some empiric data

 Showing that a reasonable model is proportional to 
LOC would weaken my hypothesis

 Stop by and chat if you’re interested

 Fits into NSF-funded work with Reid Holmes

 ICSE 2011: “Identifying Program, Test, and Environmental 
Changes That Affect Behaviour”

 Potential quals project

http://www.cs.uwaterloo.ca/~rtholmes/papers/icse_2011_holmes.pdf
http://www.cs.uwaterloo.ca/~rtholmes/papers/icse_2011_holmes.pdf
http://www.cs.uwaterloo.ca/~rtholmes/papers/icse_2011_holmes.pdf
http://www.cs.uwaterloo.ca/~rtholmes/papers/icse_2011_holmes.pdf
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What is this?
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01000100

ASCII

D

short

68

mask

FTFFFTFF

Excess-8

60
Java byte-code

fstore_1

Gray 

code

Gray 

scale

Color 

scale

Types
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 Without getting precise, types are used to interpret 

and manipulate the bit patterns – that is, they give 

them (some level of) meaning

 “Concrete” types manipulate the information in 

memory directly

 Abstract types define a protocol for manipulating 

instances of those types, but they do not define an 

implementation

Abstract data type = objects + operations
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 The only operations on objects of the type are those provided 

by the abstraction

 The implementation is hidden

 We need to show that the abstraction and the implementation 

are each “correct” … and properly related

Big picture
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Elementabstract Element’abstract

Elementconcrete Element’concrete

For every

abstract operation

For every

corresponding

concrete operation

Abstraction

function (AF)

 It commutes [What is purple and commutes?]

 AF gives an abstract meaning to concrete 

representations – more soon
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An Abelian grape (sorry)
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math.asu.edu

Specifying ADTs
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 A common way is to define the abstract effect of 

each operation (including constructors) using 

formal/informal pre- and post-conditions

 Might see this using an extended JavaDoc

Example
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// Overview: An IntSet is a mutable, unbounded set of integers. 

class IntSet {

// effects: makes a new IntSet = {}

public IntSet()

// returns: true if x  this

//          else returns false 

public boolean contains(int x)

// effects:  thispost = thispre  {x}

public void add(int x)

// effects:  thispost = thispre - {x}

public void remove(int x)

…

Algebraic specifications
From Stotts (http://www.cs.unc.edu/~stotts/723/adt.html)
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 Define a sort – give signatures of operations 

(you’ve seen this kind of thing before in typed OO 

and functional languages)

sort IntSet imports Int, Bool
signatures

new : -> IntSet
insert : IntSet × Int -> IntSet
member : IntSet × Int -> Bool
remove : IntSet × Int -> IntSet

math.asu.edu
math.asu.edu
http://www.cs.unc.edu/~stotts/723/adt.html
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Define axioms
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 “Just” like high school algebra

variables i, j : Int; s : IntSet
axioms

member(new(), i) = false
member(insert(s, j), i) =

if i = j then true else member(s, i)
remove(new(), i) = new()
remove(insert(s, j), i) = 

if i = j then remove(s, i)
else insert(remove(s, i), j)

Are these really sets?
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 Posit stuff like…

 insert(insert(s, i), j) =
insert(insert(s, j), i) 

 insert(insert(s, i), i) = insert(s, i)

 Prove from axioms

 Tons of issues about completeness, consistency, 

equality (initial vs. final algebras), etc.

 But again, “just” like high school algebra

Proving specification properties
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 Regardless of the style of specification, proofs are 

usually done inductively

 No information about the concrete representation 

and implementation – rather, showing the 

correctness of the protocol over the ADT’s 

operations

LetterSet
case-insensitive character set [from Ernst]

// effects: creates an empty LetterSet

public LetterSet ( );

// effects: thispost =
//          if ( c1  thispre | toLowerCase(c1) = toLowerCase(c)

//           then thispre else thispre  {c}
public void insert (char c);

// effects: thispost = thispre  {c}

public void delete (char c);

// returns:  (c  this)

public boolean member (char c);
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Prove desirable property of LetterSet
Large enough LetterSet contains two distinct characters

Prove: |S|>1  (c1,c2S | [toLowerCase(c1)  toLowerCase(c2)])

 Base case: S = , vacuously true

 Inductive case:  S was produced by a call of the form T.insert(c)

Assume: |T|>1  (c3,c4T [toLowerCase(c3)  toLowerCase(c4)])

Show:    |S|>1  (c1,c2S [toLowerCase(c1)  toLowerCase(c2)])
where S = T.insert(c)

Remember insert’s post-condition: 
thispost = if ( c1 thispre | toLowerCase(c1) = toLowerCase(c)

then thispre else thispre  {c}

 For inductive case, consider the two possibilities for S
 If S = T, the theorem holds by induction

 If S = T  {c}, there are three cases

 |T|=0: Vacuously true

 |T|≥1: T did not contain a char of toLowerCase(c), so the theorem holds by 
the meaning of union

 |T|>1: By inductive assumption, T contains different letters, so by the 
meaning of union, T  {c} also contains different letters

25

Now: Assume abstraction is correct
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 Abstraction function (AF): Ec→ Ea

Maps a concrete object to an abstract value

 Defines how the data structure is to be interpreted

Oh, that’s a “D”, that’s an fstore_1, that’s a 68, etc.

 Representation invariant (RI): a boolean predicate 
characterizing legal concrete representations

 States data structure well-formedness

 In essence, defines the domain of AF

 Captures information that must be shared across 
implementations of multiple operations

CharSet Abstraction
A finite mutable set of Characters[From Ernst]
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// Overview: A CharSet is a finite mutable set of Characters

// effects: creates a fresh, empty CharSet

public CharSet ( )

// effects: thispost = thispre  {c}

public void insert (Character c);

// effects: thispost = thispre - {c}

public void delete (Character c);

// returns: (c  this)

public boolean member (Character c);

// returns: cardinality of this

public int size ( );
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class CharSet {

private List<Character> elts

= new ArrayList<Character>();

public void insert(Character c)   {

elts.add(c);

}

public void delete(Character c)   {

elts.remove(c);

}

public boolean member(Character c) {

return elts.contains(c);

}

public int size() {

return elts.size();

}

}

CharSet s = new CharSet();

Character a

= new Character(„a‟);

s.insert(a);

s.insert(a);

s.delete(a);

if (s.member(a))

// print “wrong”;

else

// print “right”;
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The RI can help identify an error

 Perhaps  delete is wrong

 It should remove all occurrences

 Perhaps  insert is wrong

 It should not insert a character that is already there

class CharSet {
// Rep invariant: elts has no nulls and no 

duplicates
private List<Character> elts;
…

 Or…

  indices i of elts . elts.elementAt(i) ≠ null

  indices i, j of elts . i ≠ j 
elts.elementAt(i).equals(elts.elementAt(j))

29
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Where’s the error?
30

// Rep invariant: elts has no nulls and no duplicates 

public void insert(Character c) {

elts.add(c);

}

public void delete(Character c) {

elts.remove(c);

}
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The RI constrains structure, not meaning

 Another implementation of insert that preserves the RI

public void insert(Character c) { 

Character cc = new Character(encrypt(c));

if (!elts.contains(cc))

elts.addElement(cc);

}

public boolean member(Character c) { 

return elts.contains(c);

}

 The program is wrong … call on the AF!

31
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Abstraction function
concrete to abstract value mapping

 AF(CharSet this) = { c | c is contained in this.elts }

 set of Characters represented by elements contained in this.elts

 Typically not executable, but useful to reason about client behavior 

 Helps reason about the semantics of insert
// effects: thispost = thispre  {c}
public void insert (Character c);

 Helps identify a problem

 Applying the AF to the result of the call to insert yields

AF(elts)  {encrypt(‘a’)}

 Consider the following reasonable AF

 AF(this) = { c | encrypt(c) is contained in this.elts }

 AF(this) = { decrypt(c) | c is contained in this.elts }

32
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“Placing blame” using AF
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 AF(CharSet this) = { c | c is contained in this.elts }

 Consider a call to insert:

 On entry, the meaning is AF(thispre) ≈ eltspre

 On exit, the meaning is AF(thispost) = AF(thispre) 

{encrypt(‘a’)}

 Does this AF fix things?

AF(this) = { c | encrypt(c) is contained in this.elts }

= { decrypt(c) | c is contained in this.elts }

Some final odds and ends
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 Looking at these examples using the commutative 
diagram may help clarify any confusions

 Or ask!

 AF’s can be maintained across fairly complicated 
implementations that (for example) reorganize 
dynamically for performance

 Multiple concrete values still map to the same abstract value

 Why map concrete to abstract?

 It’s not a function in the other direction

 Ex: lists [a,b] and [b,a] each represent the set {a, b}

 It’s not as useful in the other direction


