CSE503:
SOFTWARE ENGINEERING

David Notkin
Spring 2011

5/20/2011

Evaluation of SE research

jEm s
o What convinces you?
o Why?

503 11sp © UW CSE * D. Notkin

Possible answers include

0 Intuition

0 Quantitative assessments
0 Qualitative assessments
0 Case studies

0 ... other possible answers?

503 11sp © UW CSE * D. Notkin

Brooks on evaluation

01 The first user gives you infinite utility — that is, you
learn more from the first person who tries an
approach than from every person thereafter

o In HCI, Brooks compared

o1 "narrow truths proved convincingly by statistically sound
experiments, and

o broad 'truths', generally applicable, but supported only
by possibly unrepresentative observations.”

o Grasping Reality Through lllusion -- Interactive Graphics Serving Science. Proc
1988 ACM SIGCHI

503 11sp © UW CSE * D. Notkin

5/20/2011

More on Brooks by Mary Shaw

0 “Brooks proposes to relieve the tension through a certainty-shell structure —
to recognize three nested classes of results,
Findings: well-established scientific truths, judged by truthfulness and
rigor;
Observations: reports on actual phenomena, judged by interestingness;

Rules of thumb: generalizations, signed by their author but perhaps
incompletely supported by data, judged by usefulness.”

I What Makes Good Research in Software Engineering? International Journal of
Software Tools for Technology Transfer, 2002

503 11sp © UW CSE * D. Notkin

Shaw: research questions in SE

Type of question Examples
Method or means of How can we do/create (or automate doing) X?
development ‘What is a better way to do/create X?

Method for analysis How can [evaluate the quality/correctness of X?
How do I choose between X and Y?
Design, evaluation, or | What is a (better) design or implementation for application X?

analysis of a par- ‘What is property X of artifact/method Y?
ticular instance How does X compare to Y?
What is the current state of X / practice of Y?
Generalization or Given X, what will Y (necessarily) be?
characterization ‘What, exactly, do we mean by X?

What are the important characteristics of X?
What is a good formal/empirical model for X?
What are the varieties of X, how are they related?
Feasibility Does X even exist, and if so what is it like?

Is it possible to accomplish X at all?

503 11sp © UW CSE * D. Notkin

Shaw: types of SE results

Type of result Examples
Procedure or tech- New or befter way to do some task, such as design, implementation,
nique measurement, evaluation, selection from alternatrves,

Includes operational techniques for implementation, representation,
r and analysis, but not advice or guidel
‘Qualitative or descrip- | Structure or taxonomy for a problem area, architectural style, frame-
tive model work, or design patten; non-formal domain analysis
Well-grounded checklists, well-argued informal generalizations,
guidance for integrating other results,

“Empincal model Empinical predictive model based on observed data

Analytic model Structural model precise enough to support formal analysis or auto
matic

Notation or tool Formal language to support technique or model (should have a calcu-

semantics, or other basts for computing or inference)
tool that embodies a technique
Specific solution Solution to application problem that shows use of software engineer-
ing principles — may be design, rather than implementation
Careful analysis of a system or its development
Running system that embodies a result. it may be the carrier of the
result, or its implementation may illustrate a principle that can be

applied elsewhere
Answer or judgment | Result of specific analysis. evaluation. or comparison
Report Interesting observations, rules of thumb . Notkin

Type of validation | Examples

S h aw Analysis Thave analyzed my result and find it satisfactory through __ommal
analysis) rigorous denvation and proof

(empirical model) .. data on controlled use(controlled

carefully designed statistical

expenument
Expencuce My result has been used on real examples by someone other than
[} Ty pes ‘me, and the evidence of ifs correctness / usefulness / effectiveness
s alitative model) . narmative(empirical model data,
Of usually statistical, on practice
(notation, tool) comparison of this with similar results
. . technique) actual use
validation Example Here's an example of how if works on
(toy example) a toy example, perhaps motivated
by reality
(slice of life) a system that I have been developing
Evaluation Grven the stated criteria, my result
(descriptive model) ... adequately describes the phenomena
of mterest
(qualitative model) ... accounts for the phenomena of interest
(empincal model) 15 able to predict ... because

or gives results that fit real data
Includes feasibility studies. pilot projects

Persuasion Tthought hard about this, and I believe.
(technique) if you do it the following way,
(system) a system constructed like this would
(model) this model seems reasonable

Note that if the onginal question was about feasibility, a working
system, even without analysts, can be persuasive
Blatant assertion No serious attempt to evaluate result

5/20/2011

Tichy et al. on quantitative evaluation

0 Experimental evaluation in computer science: A quantitative study. Journal
of Systems and Software 1995
Tichy, Lukowicz, Prechelt & Heinz

Abstract:

A survey of 400 recent research articles suggests that computer scientists
publish relatively few papers with experimentally validated results. The
survey includes complete volumes of several refereed computer science
journals, a conference, and 50 titles drawn at random from all articles
published by ACM in 1993. The journals of Optical Engineering (OE) and
Neural Computation (NC) were used for comparison. .. (con’t)

503 11sp © UW CSE * D. Notkin

Con't

Of the papers in the random sample that would require experimental
validation, 40% have none at all. In journals related to software engineering,
this fraction is 50%. In comparison, the fraction of papers lacking quantitative
evaluation in OF and NC is only 15% and 12%, respectively. Conversely, the
fraction of papers that devote one fifth or more of their space to experimental
validation is almost 70% for OF and NC, while it is a mere 30% for the
computer science (CS) random sample and 20% for software engineering. The
low ratio of validated results appears to be a serious weakness in computer
science research. This weakness should be rectified for the long-term health of
the field. The fundamental principle of science, the definition almost, is this: the
sole test of the validity of any idea is experiment. —Richard P. Feynman.
Beware of bugs in the above code; | have only proved it correct, not tried it.
—-Donald E. Knuth

503 11sp © UW CSE * D. Notkin

Technology transfer: briefly
o Not a consumer problem

0 Not a producer problem

0 An ecosystem issue

503 11sp © UW CSE * D. Notkin

c

Evolving the High Performance

Initiative to Support the Nation's
Information Infrastructure (1995)

“Brooks-Sutherland” report

Computer Science and
Telecommunications Board (CSTB)

and C

VLS g

503 11sp © UW CSE * D. Notkin

5/20/2011

Software engineering economics

0 The phrase dates to around 1981, when Barry
Boehm published his tome with the same title

0 Boehm identified engineering economics as one
“scientific principle” in which software engineering
fell short of hardware engineering

01 To the first order, the focus of his book was on how
to better estimate effort, cost and schedule for
large software projects — COCOMO (COnstructive
COst MOdel)

503 11sp © UW CSE * D. Notkin

COCOMO basics

o Algorithmic software cost estimation modeled with a regression formula that
has parameters derived from historical project data and current project
characteristics

The basic COCOMO equations take the form
Effort Applied = a(KLOC)® (person-months)
Development Time = c(Effort Applied) (months)
People required = Effort Applied / Development Time (count)

Organic 24 1.05 25 038
Semi-detached 3.0 112 25 035

Embedded 36 120 25 0.32

503 11sp © UW CSE * D. Notkin

Regression parameters
Basic COCOMO

0 Based on waterfall-based 63 projects at TRW
Aerospace

o Projects from 2KLOC to 100KLOC, languages from
assembler to PL/I

0 The Basic Model designed for rough order-of-
magnitude estimates, focused on small to medium-
sized projects

Three sets of parameters: organic, semi-detached and
embedded

503 11sp © UW CSE * D. Notkin

Intermediate COCOMO

1 Uses more parameters (cost drivers) that account for
additional differences estimates

0 Product attributes: required software reliability,
complexity of the product, ...

0 Hardware attributes: run-time performance constraints,
memory constraints, ...

0 Personnel attributes: software engineering capability,
applications experience, programming language
experience, ...

0 Project attributes: use of software tools, application of
software engineering methods, ...

503 11sp © UW CSE * D. Notkin

5/20/2011

Detailed COCOMO also accounts for the influence
of individual project phases
COCOMO Il was developed and released in 1997,
aimed at (then) modern software projects

Newly tuned parameters

Accounted for move from mainframes to desktops, from
batch to interface computation, to code reuse, etc.

503 11sp © UW CSE * D. Notkin

Intermediate COCOMO Intermediate COCOMO
| | s |
The 15 sub-attributes are each rated from “very low” to “extra-high” b
with six discrete choices E:G(KLOC) x EAF
Effort multipliers are empirically derived and the EAF is the product of And similarly for development time and people counts
the multiplier: Ratings
e There is a separate table for parameters a and b
across organic, semi-detached, embedded for
Intermediate COCOMO
i nschumanismra//in/intormediate_cocomo_ Ll 503 H_sp © UW CSE * . Notkin 503 11sp © UW CSE * D. Notkin
Detailed COCOMO & COCOMO I 1981 Boehm book also discusses
| o] | R

Multiple-goal decision analysis

Most optimization theory assumes that there is a single
obijective function to maximize

Models like this one account for multiple goals that must
be balanced in a definable manner

Risk analysis
Foundation for his later work in the spiral model

And more...

503 11sp © UW CSE * D. Notkin

5/20/2011

Boehm & Sullivan “Software Economics” roadmap
(ICSE 2000)

“The core competency of software engineers is in making
technical software product and process design decisions.
Today, however, there is a ‘disconnect’ between the decision
criteria that tend to guide software engineers and the value
creation criteria of organizations in which software is
developed. It is not that technical criteria, such as information
hiding architecture, documentation standards, software reuse,
and the need for mathematical precision, are wrong. On
average, they are enormously better than no sound criteria.

503 11sp © UW CSE * D. Notkin

Con't

“However, software engineers are usually not involved in or
often do not understand enterprise-level value creation
objectives. The connections between technical parameters and
value creation are understood vaguely, if at all. There is rarely
any real measurement or analysis of how software engineering
investments contribute to value creation. And senior
management often does not understand success criteria for
software development or how investments at the technical level
can contribute fundamentally to value creation. As a result,
technical criteria tend to be applied in ways that in general
are not connected to, and are thus usually not optimal for,
value creation.”

503 11sp © UW CSE * D. Notkin

Thinking about value

Decision theory (or utility theory) defines a
framework for decisions under uncertainty,
depending on the risk characteristics of decision
makers

This is closely related to (again) multi-objective
decision-making

Classical corporate finance uses net present value
(NPV) as an investment decision criterion and
computes it by discounted cash flow analysis (DCF)
— can’'t make a business case without these

503 11sp © UW CSE * D. Notkin

NPV example from Wikipedia

A corporation must decide whether to introduce a
new product line. The new product will have startup
costs, operational costs, and incoming cash flows
over six years. This project will have an immediate
(t=0) cash outflow of $100,000 (which might
include machinery, and employee training costs).
Other cash outflows for years 1-6 are expected to
be $5,000 per year. Cash inflows are expected to
be $30,000 each for years 1-6. All cash flows are
after-tax, and there are no cash flows expected
after year 6. The required rate of return is 10%.

503 11sp © UW CSE * D. Notkin

5/20/2011

Con't
The table shows the Year
present value (PV) for T=0
each year
The NPV is the sum of the =1
PVs

In this case, it's $8,881.52

A positive NPV means it =3
would be better to invest

in the project than to do T=1
nothing — but there might
be other opportunities with =5
higher NPV

T

 T(1+0.10p8

Cashflow Present Value
—100, 000

m -5100.000
30,000 — 5,000

o)y 27
30,000 — 5,000
(1+0.10)2
30,000 — 5,000
(1+0.10)

$20.661

783

0,000 - 5,000
d+oiop 70
30,000 — 5,000
L siss
1ro0.10p
30,000 — 5,000
S14,112

Real options

DCF/NPV treats assets as passively held — not

actively managed

But projects are (or can be ©) actively managed
Management usually has the flexibility to make
changes to real investments in light of new information.
(e.g., to abandon a project, enter a new market, etc.)

The key idea of real options is to treat such

flexibility as an option, and to (in some cases) price

them using techniques related to those for financial

options

503 11sp © UW CSE * D. Notkin

Baldwin and Clark (2000)

Baldwin and Clark view Parnas' information hiding
modules as creating options

They value these and develop a theory of how
modularity in design influenced the evolution of the
industry structure for computers over the last forty
years

Non-modular systems must be kept or replaced as a
whole

A system of independent modules can be kept or
replaced (largely) individually based on judgments
of improvement (or not)

Modularity provides a portfolio of options vs. an
option on a portfolio

503 11sp © UW CSE * D. Notkin

DSMs: design structure matrices

The parameters are A, B, and C

The X in row B, column A means that
good choice for B depends on the
choice made for A

Parameters requiring mutual
consistency are interdependent,
resulting in symmetric marks: (B,C) and
(C.B)

When one parameter choice must
precede another the parameters are
said to be hierarchically dependent:
(B,A)

Independent parameters can be
changed without coordination

A B c
A .
B X B X
C X

Figure 1: DSM for a design of three parameters.

Material from

Sullivan, Griswold, Cai, Hallen. The
structure and value of modularity in
software design. ESEC/FSE 2001

503 11sp © UW CSE * D. Notkin

5/20/2011

Splitting Parnas KWIC
1 DSMs may not show largely independent designs ADGJBEHKCFILM
. . A~ Input Type
o In these cases, one approach is to apply splitting D CreType
. . . NADGJOPBCEFHIKLM
0 Break a dependence with a new parameter that constrains the values of the G- Alph Type T
Py . . . Ty oL L
original parameters — this means, in part, that they depend on it J - Out Type A- In Type
B - In Data X X
. Py D - Circ Type
0 Fix the value of the new parameter so that the original parameters to be E - Circ Data X . X G,,\‘.L; rv::,
changed independently as long as they are only changed in ways consistent H - Alph Data X X - Out Type
with the new constraint K - Out Data . O-Line Data | x x|
. . . C-inputAlg [x X P-LineAld |x X
0 For example, introduce a new interface (I, in the below example) F - Ciro Al X X X B-InData X X
T ry s T |- Aiph Alg X XXX C - Indlg X X X .
o Alg Y x %X E-CrcDam |x X x
I B T K" F - Circ Alg x X
A X N M - Master XX XX | [Fapnoas |x X
B X R X Figure 5: DSM for strawman modularization | - Alph Alg X X
c X A K- Out Data X X
— - L - Out Alg X X
F 3: DSM ¢ ul: I b d b i A —
igure or a modular design obfained by splitting. Fme]x x x x -
503 11sp © UW CSE * D. Notkin
Figure 7: DSM for information hiding modularization

NOV (net option value) KWIC NOV
fem fem

¢ The option value of each module is the
value at the peak

o A module creates an opportunity o * Sum the module NOV’s
¢ 0.26 for the strawman design

. . . . o2
to invest in k experiments to create candidate f + 1.56 for the information-hiding
replacements, 02

R 04
each at a cost related to the complexity of the module sl =
. Ty . «f *—_H_-”'\'T_
if any of the results are better than the existing choice, 98 M- acccocco
to substitute in the best of them Store e
—%—CuShift ~ —@—Alpha 03

at a cost that related to the visibility of the module to ——Ouput —8—Master Cont o \\':'&..
other modules in the system s

Figure 13: Options Values for Informarion Hiding Design

Tapat
|—e—Cut
503 11sp © UW CSE * D. Notkin Figure 14: Options Values for Strawman Design in

5/20/2011

Status

The basic idea seems to make sense to many people
One of the core problems is the notion of how to tune
the model parameters

Financial markets set parameters based primarily on scads
of historic data

COCOMO set parameters based on careful studies of a
reasonably large set of reasonably similar software
projects

Tuning parameters for modularity seems more complicated

503 11sp © UW CSE * D. Notkin

Baer |
3| macroaconomic
data and models

“Betier modeis of |

| 4 in SWAT including K

optons, synergies
& conpotiion_|

1 ‘Signficantty and

[oomermosia |
| imaiomsu ortpmorrerf
e process SWIIT projects,
& fo dessgn , portiolics
‘and industry

| Better sWIT
Sysienportiobo |yl giatus, vauation, |

business-case,
o |8k s N
Gatior Gata for | -
T | povonmossng | |4k e Boehm-Sullivan
IT costs & roadmap
_Schodde’
‘ Batier SWITT /
Better models for /
} estimating SW/IT project cost & ‘
| costs & schedue | |

o mgmt.
tracking
- cat= B = -

Figure 1: Roadmap for research in software engineering economics.

McConnell’s cone of uncertainty
ICSE 2009 keynote

Cone of Uncertainty

503 11sp © UW CSE * D. Notkin

Governance of Software Development

Clay Williams, IBM Research

Slides directly taken from an NSF workshop
presentation ESEREREEEEW

503 11sp © UW CSE * D. Notkin

Governance of Software Development
Strategic Initiative

= Goal: Develop the science and technology that enables the Rational
software delivery platform to provide support for governing the
business of software development.

Development Governance

Organizational
Design and
Collaboration

Value and Risk
Management

Governance @ IBMI

5/20/2011

Tempo - Overview

* Problem Statement

When project teams commit to a schedule, they are placing a bet. It would be
extremely valuable for them to know the odds of winning.

= Approach
Capture “bottom-up” predictions regarding the time necessary to complete each task
in a work breakdown.

Rather than discrete predictions, capture triangular distribution that reflects the fact
predications are random variables.
Develop optimized scheduling approaches that rapidly reduce schedule risk in the
project
Surface schedule risks to allow teams to better manage scheduling issues.

* What is hard?

Providing a tool that is easy to use and supportive of “what-if" risk mitigation analysis
requires addressing subtle and difficult usability issues.
The variety of optimizations and analyses require significant mathematical skill.

Architectural and Social Governance of Software
Development

= Research Goals
Exploit / expand the role architectures play as “boundary objects” spanning
multiple domains of discourse.
Develop techniques for exploring key structural and behavioral properties of
architectures (software, IT, and EA), the socio-technical dynamics of the teams
producing and consuming them, and how these two areas can be aligned and
engender communication beyond the technical domain.
Develop / extend architectural approaches to support business decisions and value
management.

Understand the interplay across the value / architectural / socio-technical domains.

= Collaborations
CMU (Jim Herbsleb)
Harvard Business School (Carliss Baldwin) - pending
Virginia (Kevin Sullivan)

10

Architecture and Business / Technical Alignment

Customer Intimacy

Revenue /Business\\
Cost

Profit

Market Shar

Compliance Efficiency Product

Leadership
Technical

Strategy
/ \

Project Portfolio

Architecture

5/20/2011

My bottom line

The long-term goal of software engineering economics is to help everybody
make more sensible decisions

Technical decisions
Business decisions
Project management decisions

Not one of these is primary with the others secondary — but that is how we
each seem to treat the others

Better understanding the links among them is crucial; the models may give
us opportunities to better understand these links

| am always scared that quantification tends to lead to a focus on the
quantities, and there is often a disconnect between the quantities we can
measure and want we want to do

503 11sp © UW CSE * D. Nofkin

11

