
5/20/2011

1

CSE503:

SOFTWARE ENGINEERING
RESEARCH APPROACHES, ECONOMICS

AND GOVERNANCE

David Notkin

Spring 2011

Evaluation of SE research

503 11sp © UW CSE • D. Notkin

 What convinces you?

 Why?

2

Possible answers include

 Intuition

 Quantitative assessments

 Qualitative assessments

 Case studies

 … other possible answers?

503 11sp © UW CSE • D. Notkin

3

Brooks on evaluation

 The first user gives you infinite utility – that is, you
learn more from the first person who tries an
approach than from every person thereafter

 In HCI, Brooks compared

 "narrow truths proved convincingly by statistically sound
experiments, and

 broad 'truths', generally applicable, but supported only
by possibly unrepresentative observations.‖

 Grasping Reality Through Illusion -- Interactive Graphics Serving Science. Proc
1988 ACM SIGCHI

503 11sp © UW CSE • D. Notkin

4

5/20/2011

2

More on Brooks by Mary Shaw

 ―Brooks proposes to relieve the tension through a certainty-shell structure –

to recognize three nested classes of results,

 Findings: well-established scientific truths, judged by truthfulness and

rigor;

 Observations: reports on actual phenomena, judged by interestingness;

 Rules of thumb: generalizations, signed by their author but perhaps

incompletely supported by data, judged by usefulness.‖

 What Makes Good Research in Software Engineering? International Journal of

Software Tools for Technology Transfer, 2002

503 11sp © UW CSE • D. Notkin

5

Shaw: research questions in SE

503 11sp © UW CSE • D. Notkin

6

Shaw: types of SE results

503 11sp © UW CSE • D. Notkin

7

Shaw

 Types

of

validation

503 11sp © UW CSE • D. Notkin

8

5/20/2011

3

Tichy et al. on quantitative evaluation

 Experimental evaluation in computer science: A quantitative study. Journal

of Systems and Software 1995

 Tichy, Lukowicz, Prechelt & Heinz

 Abstract:

A survey of 400 recent research articles suggests that computer scientists

publish relatively few papers with experimentally validated results. The

survey includes complete volumes of several refereed computer science

journals, a conference, and 50 titles drawn at random from all articles

published by ACM in 1993. The journals of Optical Engineering (OE) and

Neural Computation (NC) were used for comparison. .. (con‘t)

503 11sp © UW CSE • D. Notkin

9

Con‘t

Of the papers in the random sample that would require experimental

validation, 40% have none at all. In journals related to software engineering,

this fraction is 50%. In comparison, the fraction of papers lacking quantitative

evaluation in OE and NC is only 15% and 12%, respectively. Conversely, the

fraction of papers that devote one fifth or more of their space to experimental

validation is almost 70% for OE and NC, while it is a mere 30% for the

computer science (CS) random sample and 20% for software engineering. The

low ratio of validated results appears to be a serious weakness in computer

science research. This weakness should be rectified for the long-term health of

the field. The fundamental principle of science, the definition almost, is this: the

sole test of the validity of any idea is experiment. —Richard P. Feynman.

Beware of bugs in the above code; I have only proved it correct, not tried it.

—Donald E. Knuth

503 11sp © UW CSE • D. Notkin

10

Technology transfer: briefly

 Not a consumer problem

 Not a producer problem

 An ecosystem issue

503 11sp © UW CSE • D. Notkin

11

Evolving the High Performance

Computing and Communications

Initiative to Support the Nation's

Information Infrastructure (1995)

“Brooks-Sutherland” report

Computer Science and

Telecommunications Board (CSTB)

503 11sp © UW CSE • D. Notkin 12

5/20/2011

4

Software engineering economics

 The phrase dates to around 1981, when Barry

Boehm published his tome with the same title

 Boehm identified engineering economics as one

―scientific principle‖ in which software engineering

fell short of hardware engineering

 To the first order, the focus of his book was on how

to better estimate effort, cost and schedule for

large software projects – COCOMO (COnstructive

COst MOdel)

503 11sp © UW CSE • D. Notkin

13

COCOMO basics

 Algorithmic software cost estimation modeled with a regression formula that

has parameters derived from historical project data and current project

characteristics

 The basic COCOMO equations take the form

 Effort Applied = a(KLOC)b (person-months)

 Development Time = c(Effort Applied)d (months)

 People required = Effort Applied / Development Time (count)

503 11sp © UW CSE • D. Notkin

a b c d

Organic 2.4 1.05 2.5 0.38

Semi-detached 3.0 1.12 2.5 0.35

Embedded 3.6 1.20 2.5 0.32

14

Regression parameters

Basic COCOMO

 Based on waterfall-based 63 projects at TRW

Aerospace

 Projects from 2KLOC to 100KLOC, languages from

assembler to PL/I

 The Basic Model designed for rough order-of-

magnitude estimates, focused on small to medium-

sized projects

 Three sets of parameters: organic, semi-detached and

embedded

503 11sp © UW CSE • D. Notkin

15

Intermediate COCOMO

 Uses more parameters (cost drivers) that account for
additional differences estimates

 Product attributes: required software reliability,
complexity of the product, …

 Hardware attributes: run-time performance constraints,
memory constraints, …

 Personnel attributes: software engineering capability,
applications experience, programming language
experience, …

 Project attributes: use of software tools, application of
software engineering methods, …

503 11sp © UW CSE • D. Notkin

16

5/20/2011

5

Intermediate COCOMO

 The 15 sub-attributes are each rated from ―very low‖ to ―extra-high‖

with six discrete choices

 Effort multipliers are empirically derived and the EAF is the product of

the multipliers

503 11sp © UW CSE • D. Notkin
http://neohumanism.org/i/in/intermediate_cocomo_1.html

17

Intermediate COCOMO

 E=a(KLOC)b  EAF

 And similarly for development time and people counts

 There is a separate table for parameters a and b

across organic, semi-detached, embedded for

Intermediate COCOMO

503 11sp © UW CSE • D. Notkin

18

Detailed COCOMO & COCOMO II

 Detailed COCOMO also accounts for the influence

of individual project phases

 COCOMO II was developed and released in 1997,

aimed at (then) modern software projects

 Newly tuned parameters

 Accounted for move from mainframes to desktops, from

batch to interface computation, to code reuse, etc.

503 11sp © UW CSE • D. Notkin

19

1981 Boehm book also discusses

 Multiple-goal decision analysis

 Most optimization theory assumes that there is a single

objective function to maximize

 Models like this one account for multiple goals that must

be balanced in a definable manner

 Risk analysis

 Foundation for his later work in the spiral model

 And more…

503 11sp © UW CSE • D. Notkin

20

5/20/2011

6

Boehm & Sullivan ―Software Economics‖ roadmap
(ICSE 2000)

 ―The core competency of software engineers is in making

technical software product and process design decisions.

Today, however, there is a ‗disconnect‘ between the decision

criteria that tend to guide software engineers and the value

creation criteria of organizations in which software is

developed. It is not that technical criteria, such as information

hiding architecture, documentation standards, software reuse,

and the need for mathematical precision, are wrong. On

average, they are enormously better than no sound criteria.

503 11sp © UW CSE • D. Notkin

21

Con‘t

 ―However, software engineers are usually not involved in or

often do not understand enterprise-level value creation

objectives. The connections between technical parameters and

value creation are understood vaguely, if at all. There is rarely

any real measurement or analysis of how software engineering

investments contribute to value creation. And senior

management often does not understand success criteria for

software development or how investments at the technical level

can contribute fundamentally to value creation. As a result,

technical criteria tend to be applied in ways that in general

are not connected to, and are thus usually not optimal for,

value creation.‖

503 11sp © UW CSE • D. Notkin

22

Thinking about value

 Decision theory (or utility theory) defines a
framework for decisions under uncertainty,
depending on the risk characteristics of decision
makers

 This is closely related to (again) multi-objective
decision-making

 Classical corporate finance uses net present value
(NPV) as an investment decision criterion and
computes it by discounted cash flow analysis (DCF)
– can‘t make a business case without these

503 11sp © UW CSE • D. Notkin

23

NPV example from Wikipedia

 A corporation must decide whether to introduce a
new product line. The new product will have startup
costs, operational costs, and incoming cash flows
over six years. This project will have an immediate
(t=0) cash outflow of $100,000 (which might
include machinery, and employee training costs).
Other cash outflows for years 1-6 are expected to
be $5,000 per year. Cash inflows are expected to
be $30,000 each for years 1-6. All cash flows are
after-tax, and there are no cash flows expected
after year 6. The required rate of return is 10%.

 503 11sp © UW CSE • D. Notkin

24

5/20/2011

7

Con‘t

 The table shows the
present value (PV) for
each year

 The NPV is the sum of the
PVs

 In this case, it‘s $8,881.52

 A positive NPV means it
would be better to invest
in the project than to do
nothing – but there might
be other opportunities with
higher NPV

503 11sp © UW CSE • D. Notkin

25

Real options

 DCF/NPV treats assets as passively held – not
actively managed

 But projects are (or can be ) actively managed

 Management usually has the flexibility to make
changes to real investments in light of new information.
(e.g., to abandon a project, enter a new market, etc.)

 The key idea of real options is to treat such
flexibility as an option, and to (in some cases) price
them using techniques related to those for financial
options

503 11sp © UW CSE • D. Notkin

26

Baldwin and Clark (2000)

 Baldwin and Clark view Parnas' information hiding

modules as creating options

 They value these and develop a theory of how

modularity in design influenced the evolution of the

industry structure for computers over the last forty

years

 Non-modular systems must be kept or replaced as a

whole

 A system of independent modules can be kept or

replaced (largely) individually based on judgments

of improvement (or not)

 Modularity provides a portfolio of options vs. an

option on a portfolio

503 11sp © UW CSE • D. Notkin

27

DSMs: design structure matrices

 The parameters are A, B, and C

 The X in row B, column A means that
good choice for B depends on the
choice made for A

 Parameters requiring mutual
consistency are interdependent,
resulting in symmetric marks: (B,C) and
(C,B)

 When one parameter choice must
precede another the parameters are
said to be hierarchically dependent:
(B,A)

 Independent parameters can be
changed without coordination

503 11sp © UW CSE • D. Notkin

Material from

Sullivan, Griswold, Cai, Hallen. The

structure and value of modularity in

software design. ESEC/FSE 2001

28

5/20/2011

8

Splitting

 DSMs may not show largely independent designs

 In these cases, one approach is to apply splitting

 Break a dependence with a new parameter that constrains the values of the

original parameters – this means, in part, that they depend on it

 Fix the value of the new parameter so that the original parameters to be

changed independently as long as they are only changed in ways consistent

with the new constraint

 For example, introduce a new interface (I, in the below example)

503 11sp © UW CSE • D. Notkin

29

Parnas KWIC

503 11sp © UW CSE • D. Notkin

30

NOV (net option value)

 A module creates an opportunity

 to invest in k experiments to create candidate

replacements,

 each at a cost related to the complexity of the module

 if any of the results are better than the existing choice,

to substitute in the best of them

 at a cost that related to the visibility of the module to

other modules in the system

503 11sp © UW CSE • D. Notkin

31

KWIC NOV

503 11sp © UW CSE • D. Notkin

• The option value of each module is the

value at the peak

• Sum the module NOV‘s

• 0.26 for the strawman design

• 1.56 for the information-hiding

32

5/20/2011

9

Status

 The basic idea seems to make sense to many people

 One of the core problems is the notion of how to tune

the model parameters

 Financial markets set parameters based primarily on scads

of historic data

 COCOMO set parameters based on careful studies of a

reasonably large set of reasonably similar software

projects

 Tuning parameters for modularity seems more complicated

503 11sp © UW CSE • D. Notkin

33

503 11sp © UW CSE • D. Notkin

Boehm-Sullivan roadmap

Boehm-Sullivan

roadmap

34

McConnell‘s cone of uncertainty

ICSE 2009 keynote

503 11sp © UW CSE • D. Notkin

35

Governance of Software Development

 Clay Williams, IBM Research

 Slides directly taken from an NSF workshop

presentation

503 11sp © UW CSE • D. Notkin

36

Governance @ IBM Future Directions

5/20/2011

10

503 11sp © UW CSE • D. Notkin

37

503 11sp © UW CSE • D. Notkin

38

503 11sp © UW CSE • D. Notkin

39

503 11sp © UW CSE • D. Notkin

40

5/20/2011

11

503 11sp © UW CSE • D. Notkin

41

My bottom line

 The long-term goal of software engineering economics is to help everybody

make more sensible decisions

 Technical decisions

 Business decisions

 Project management decisions

 Not one of these is primary with the others secondary – but that is how we

each seem to treat the others

 Better understanding the links among them is crucial; the models may give

us opportunities to better understand these links

 I am always scared that quantification tends to lead to a focus on the

quantities, and there is often a disconnect between the quantities we can

measure and want we want to do

503 11sp © UW CSE • D. Notkin

42

